

BWO Control System 900 CNC Programming 900

- 1 Introduction
- 2 Operating
- 3 C NC program (F / S)
- 4 Traverse conditions (G)
- 5 Cycles (G)
- 6 Additional functions (M)
- 7 Tool (T)
- 8 Parameter(P / q)
- 9 Messages
- 10 Programs

1. Introduction

1.1	Hardware construction	1 - 2
1.1.1	Modules	1 - 2
1.1.2	Examples of CNC controllers	1 - 4
1.1.3	Operating panels	1 - 6
1.2	Software construction	1 - 9
1.2.1	Overall view	1 - 9
1.2.2	Software input with operating panel CNC 910 / CNC 920 / RC 910	1 -10
1.2.3	Software programs CNC 910 / CNC 920 / RC 910	1 -12
1.2.4	Software input with operating panel CNC 900	1 -14
1.2.5	Software input with operating panel CNC 900 C	1 -15
1.2.6	Software programs CNC 900 / CNC 900 C	1 -16
1.3	Software - components / - version check / - update	1 -18
1.3.1	Operating panels	1 -18
1.3.2	CNC CPU	1 -19
1.3.3	PLC CPU	1 -24
1.4	Notes for the line-up	1 -25
1.5	CNC funktions	1 -30

1.1 Hardware construction

The control system 900 consists of two components:

- chassis with slots for the plug-in modules
- operating panel in the housing or with planner front for the cabinet installation

1.1.1 Modules

Environment conditions

Operating temperature Storage temperature Dampness		0 to +50 °c -10 to +60 °c 10 to 90 %, non-condensing		
Chassis		with 1, 2, 4 and 8 slots for the ac The individual chassis can by plu		
Back-up battery PB Bus termination BA		Buffering the RAM Memory (+3,6V) Termination of the internal bus system		
Power packs	NG 4 NG 8 NG 16 NG 24	+5V / 4A and ±15V / 0,2A +5V / 8A and ±15V / 0,5A +5V / 16A and ±15V / 1A +5V / 24A and ±15V / 1,5A	Chassis with 1 slot Chassis with 1 slot Chassis with 2 slots Chassis with 2 slots	
Central proces	sing units			
CNC 32Bit / 64Bit ETH		for all CNC and PLC Functions, user memories 1,5MB / 3MB for NC programs and parameters, flag memory 60kB.		
CNC 32Bit / 64Bit		for all CNC Functions as well as alternatively for integrated / all PLC functions, user memories 1,5MB / 3MB for NC programs and parameters, flag memory 60kB.		
PLC 16k / 64k		High performance RISC processor for all PLC Functions as well as NC functions with POS modules, Flag memory 60kB, Program memory for 16k / 64k of instruction.		

1.1.1 Modules (continuation)

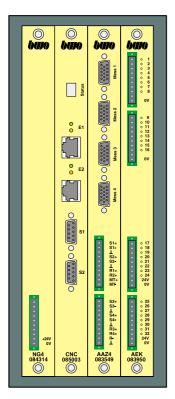
Axis modules

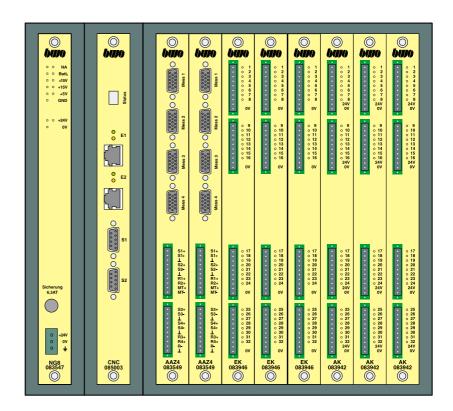
Axis module Axis module Axis module	AAZ1 AAZ2 AAZ4	passively, for 1 analog triggered axis, incremental passively, for 2 analog triggered axes, incremental passively, for 4 analog triggered axes, incremental
Axis module Axis module	AZA2 AZA4	passively, for 2 analog triggered axes, absolutely passively, for 4 analog triggered axes, absolutely
Axis module	ASM	passively, for 3 stepping motors
Axis module	SERC	aktiv, for 8 digitally triggered axes with SERCOS LWL Interface
Digital I/O modules		max. ones 1024 in and outputs
Input module		
In / output module	EK AEK	32 inputs 16 inputs, 16 outputs (0.5A)

Analog I/O moduls

Digital-analog converter	DAW2	two-way
Digital-analog converter	DAW4	fourfold
Analog-digital converter	ADW4	fourfold

Communication modules


Logs	COM	programming processor module for special applications
Ethernet connection	ETH	connection of the system PLC 900 to the Ethernet
Connection of peripheral	AS I	peripheral connection of peripheral device
CAN bus connection	CAN	connection to the CAN bus for drives and I/O


Addition modules

Koppelmodul	KOP	to couple of two groups of chassis (PLC CPU)
-------------	-----	--

1.1.2 Examples of CNC controllers

Example of a CNC controller of 4 axes

Chassis with:

4 slots for Power pack NG4,

Central processing unit CNC (32bit),

Axis module AAZ and AEK module.

- 1 Back-up battery (left at the chassis beside the power pack)
- 1 Bus termination (on the right attached at the chassis)

Example of a CNC Controller of medium performance of 8 axes

Chassis with:

- 1 slot for Power pack NG8,
- 1 slot for central processing unit CNC (32bit),
- 8 slots for Axis modules AAZ and I/O modules.
- 1 Back-up battery (left at the chassis beside the power pack)
- 1 Bus termination (on the right attached at the chassis)

1.1.2 Examples of CNC controllers (continuation)

©		0 0	O O
Sicherung 8AT 0 +24V 00 + 00 + 00 + 00 + 00 + 00 + 00 + 00	51 52 52 52 52 52 52 52 52 52 52 52 52 52	S11 S11 <th>0 17 0 17</th>	0 17 0 17

Example of a CNC Controller of high performance of 16 axes

Chassis with:

- 2 slots for Power pack NG16,
- 2 slots for Central processing unit CNC (64bit),
- 4 slots for Axis modules AAZ,
- 8 slots for I/O modules.
- 1 Back-up battery (left attached at the chassis beside the power pack)
- 1 Bus termination (on the right attached at the chassis)

1.1.3 **Operating panels**

Operating panel CNC910

 LCD-Bildschirm TF 	T
---------------------------------------	---

- Resolution
- Colours of 4096
- Touch screen with resolution
- Run-time memory DRAM
- Flash disk memory 8MB
- 42 function keys, of it 15 freely shapable
- PLC Keys with display on the LCD Display
- connections
- 1 serial interface

6.5 "

256

16MB

640 x 480

1024 x1024

- machine operating panel (integrated)
- 1 emergency stop
- 1 key-operated switsch
- 2 potentiometers

10.4"

640 x 480

Operating panel CNC920

- LCD-Bildschirm TFT
- Resolution
- Colours of 4096 256
- Touch screen 1024 x1024
- Run-time memory DRAM 16MB
- Flash disk memory 8MB
- 42 function keys, of it 15 freely shapable
- PLC keys with display on the LCD display
- 1 Ethernet RJ45 - Connections 1 serial interface
- Machine operating panel (separately)
- 1 emergency stop
- 1 key-operated switsch
- 2 potentiometers
- 1 illuminated push button

- 1 Ethernet RJ45

1.1.3 **Operating panels**

Operating panels RC910

for the mobile application

in the versions (from above): Standard, with handwheel, with joystick

- LCD LCD-Bildschirm TFT
- Resolution

- Flash disk memory

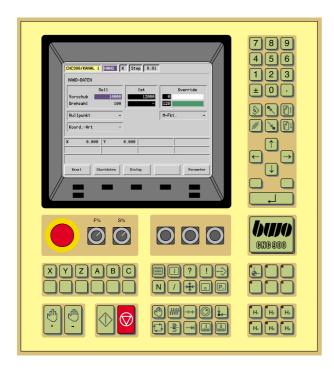
- 640 x 480 - Colours of 4096 256
- Touch screen with resolution
- Run-time memory DRAM
 - 16MB 8MB
- 42 function keys, of it 15 freely shapable
- PLC Keys with display on the LCD Display
- connections

1 Ethernet RJ45 1 serial interface

6.5 "

1024 x1024

- machine operating panel (integrated)
- 1 emergency stop 1 key-operated switsch
- 2 potentiometers



1.1.3 Operating panels

Operating panel CNC 900

Operating panel CNC 900C

		789 456
CNC900/KANAL 1 HAND X Step	0.01	123
HAND-DATEN		
Soll Is Vorschub 19999	t Override	±0.
Drehzahl 100		
Nullpunkt -	H-Fkt	
KoordArt -		
X 0.000 Y 0.000		
- C - C	- (
Kanal Startdaten Dialog	Paraseter	_ 🖵 _
P% S%		DIIIO EXE 900 G
XYZABC		
XYZABC		
ላ ው 🔿		
$ \neq \geq \vee \vee $	RRADO	

Wide Color LCD TFT, VGA diagram (640 x 480),

512kB EEPROM for user specific masks and 256k flash drive,

Integrated function keys, cursor keys, numeric key block,

Separate keys for axis selection, keys for machine functions, Peripheral device interface, 1 serial interface,

emergency-stop key, 2 potentiometers and key switches, 2 control elements (optional) Wide Color LCD TFT, VGA diagram (640 x 480),

CPU Pentium compatibly, \geq 200MHz, RAM Memory \geq 16MB, Hard disk \geq 3,2GB, Floppy disk drive 3.5" 1.44MB, ASCII foil keyboard (optional),

Integrated function keys, cursor keys, numeric key block, Separate keys for axis selection, keys for machine functions,

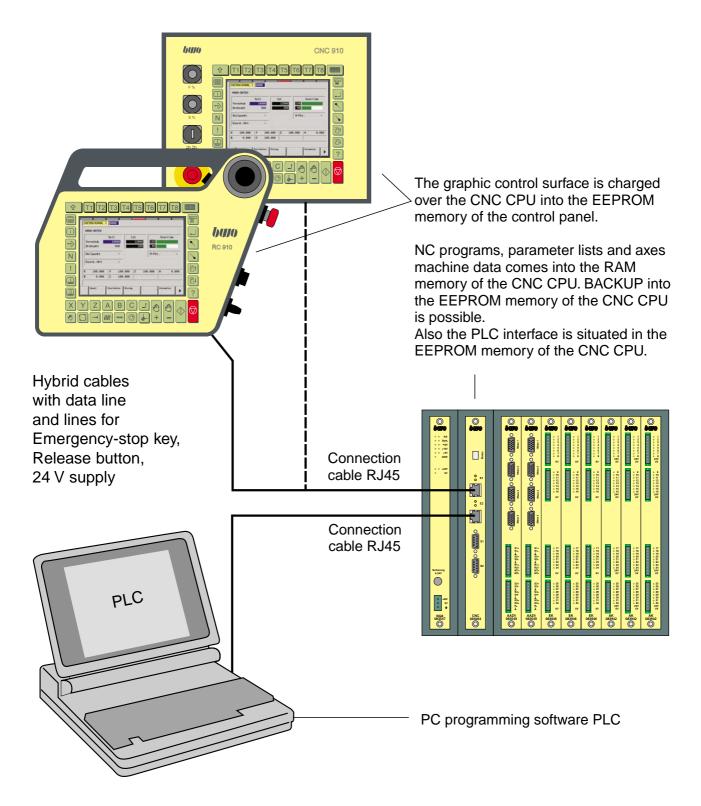
Peripheral device interface, 1 parallel and 2 serial interfaces, 2 free slots, Emergency-stop key and 2 potentiometers

1.2 Software construction

1.2.1 Overall view

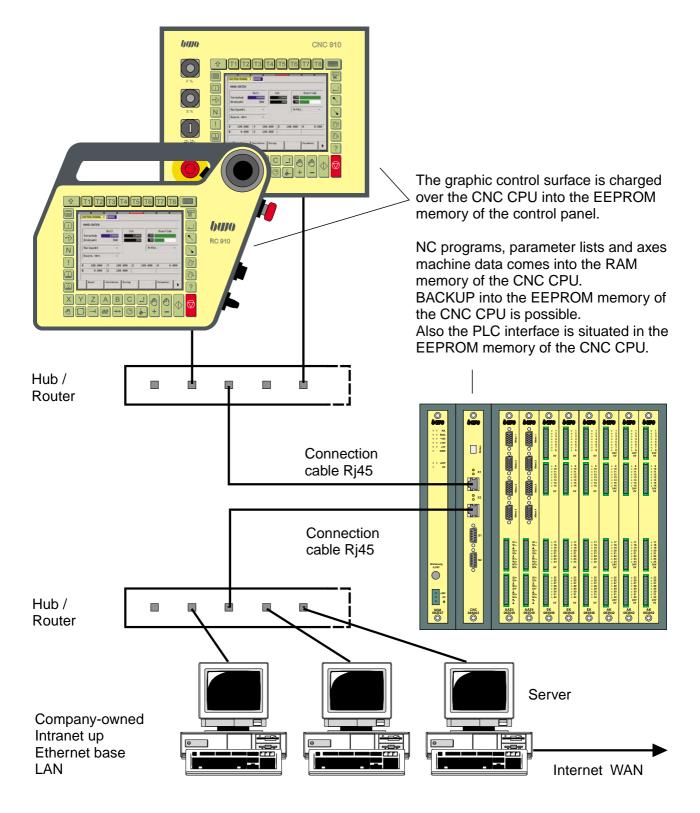
The required software consists of several components:

- PLC900 for the programming of the adaptation program (manual for the machine manufacturer)
- PROMA to the programming of the graphic control surface and display (manual for the machine manufacturer)
- CNC900, the CNC Core
- WINBV for operating system administration with CNC910 / CNC920 / RC910 / CNC ETH (10.1)
- BV.EXE for operating system administration with CNC 900 / CNC 900 C (10.2)
- DLL for operating system extension
- NCARC for the archiving of the NC programs


in this manual operation and NC programming for the CNC user

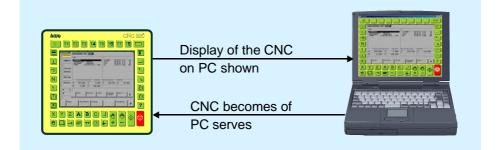
(10.3)

1.2.2 Software input with operating panels CNC910 / CNC920 / RC910


Configuration with PC

1.2.2 Software input with operating panels CNC910 / CNC920 / RC910

Configuration with networks



1.2.3 Software for data tansfer between CNC Operating panel and PC

WINBV

Software on a PC to controlling of the CNC.

The display of the CNC is illustrated on a PC. The control can be served then from the PC.

Thus can be implemented:

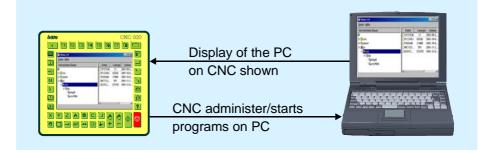
- Diagnosis locally
- On-line remote diagnostics
- Operating system care
- Data adminstration
- Data protection
- NC archiving

Details in addition in this manual paragraph 10.1.

SERVER

Software on a PC for data transfer with the CNC.

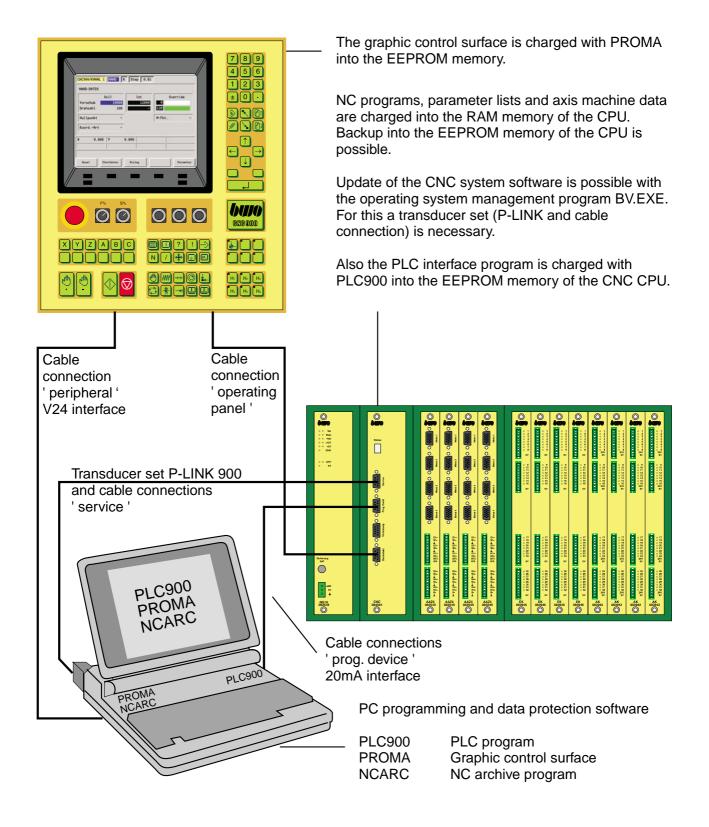
Cim	`		
	NC data	-	
	load / save		


By the CNC can be accessed the drive assemblies of a server. Several controls can be connected at a server and load NC data from the server or save on the server.

1.2.3 Software for data tansfer between CNC Operating panel and PC

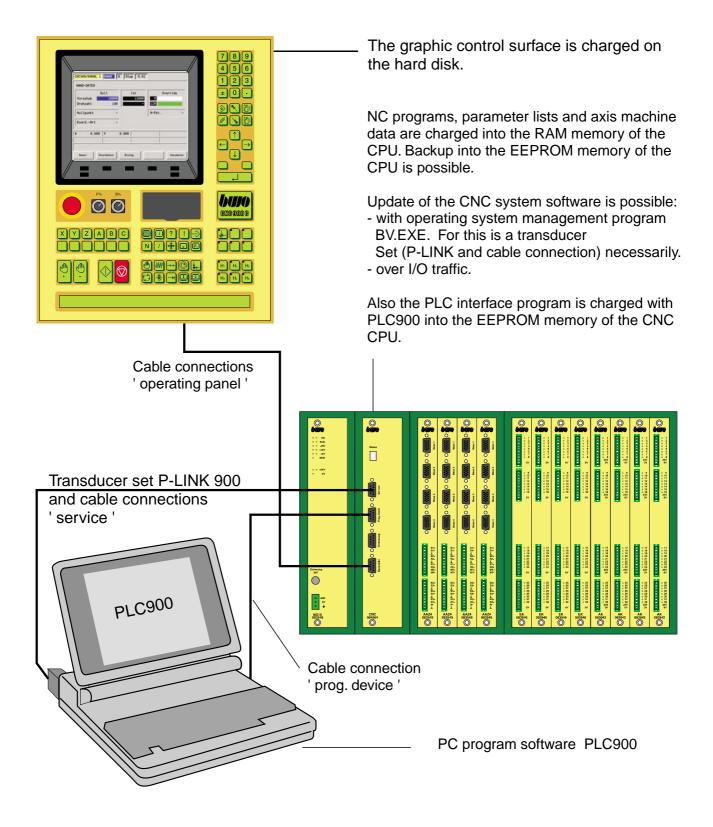
WINTERM

Software on the CNC Operating panel to the control PC



On the CNC Operating panel the display PC is illustrated.

From the CNC Operating panel programs on the PC can be started and managed.



1.2.4 Software input with operating panel CNC 900

1.2.5 Software input with operating panel CNC 900 C

1.2.6 Software programs

Bootstrap loader (Boot software or Booter)

The bootstrap loader for the CNC900 is on the boat PROM (purchase number 084076) of the CNC module. The CNC module is delivered with the topical status of the bootstrap loader.

Operating system often commodity consisting of the files

- ' BS900 ' BWO standard operating system for CNC900
- ' DLL ' BWO library software for customized operating system extensions.

The operating system software for the CNC900 is on the FLASH EPROM of the CNC module. The CNC module is delivered with the topical status of the operating system often commodity.

NC program

In the buffered SRAM memory of the CNC module the following data are stored:

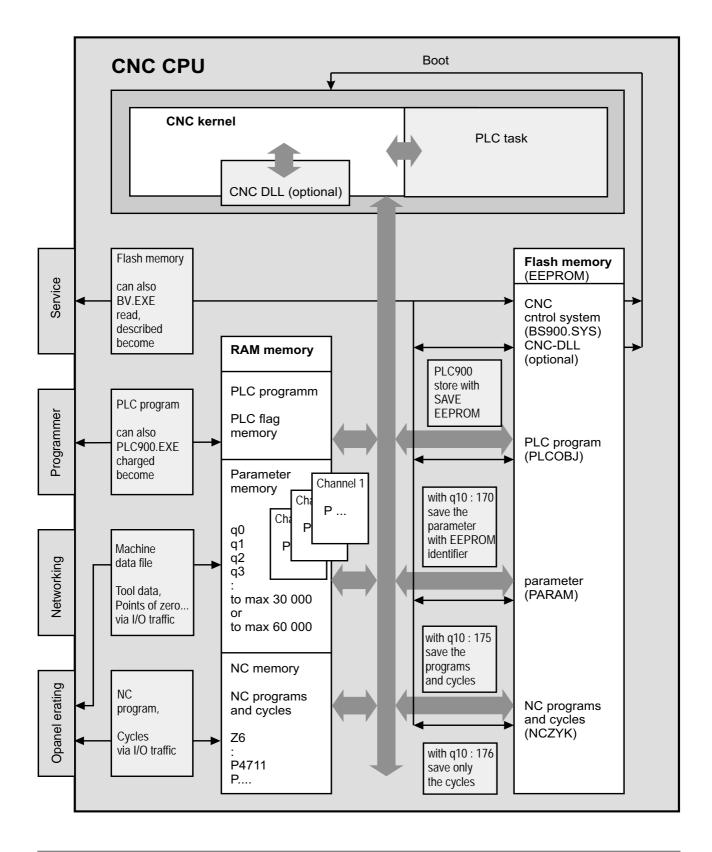
- NC programs
- parameter P
- machine data q or P

These data can be read in or output with I/O traffic over the operating panel (V.24 peripheral device interface). In addition the archiving program " NCARC " can be used.

Operating system management program BV.EXE

With BV.EXE valid operating system and library files can be burned in the Flash EPROM of the CNC module. Furthermore BV.EXE offers different auxiliary functions for the administration and archiving of operating systems, libraries as well as NC programs and CNC parameters.

Programming software PLC900


With the programming software PLC900 can be created on a PC a machine-specific interface program.

Programming software PROMA

With the programming software PROMA can be created on an IBM-compatible PC (with VGA 640 x 480) a machine-specific graphic control surface. A control surface consists of several frames, which are summarized in a project.

1.2.6 Software programs (continuation)

1.3 Software - components / - version check / - update

Note: in the following text xxx the 3 digit version number always means

1.3.1 operating panels

Software components	CNC900	CNC900C BWO standard Installation in C:\CNC900C
Operating system	CNC900.RCE	CNC900X.EXE or CNC900X.DLL in connection with one machine-specific application
User surface / screen	SHOW_E	SHOW_E
		further one required files in C:\CNC900C : - RTM.EXE subroutine for CNC900X.xxx - DPMI16BI.OVL " - PROCEX.DLL " - CNC900X.CFG configuration file for CNC900X.xxx - PLC_EDIT.EXE text editor

Software version check

CNC900.RCE, CNC900X.EXE, CNC900X.DLL:

Dive with current control surface into the diagnostic display (soft keys F6 + F7 press at the same time, return with F1).

Here becomes with 'operating panel software: CNC900X.EXE/DLL: ' the time stamp of the operating panel software displayed.

SHOW_E :

Dive with current control surface into the diagnostic display (soft keys F6 + F7 press at the same time, return with F1).

Here becomes with 'status SHOW_E: 'Project name and time stamp displayed or

during switching on routine is displayed the SHOW_E project name and time stamp in the line with ' test operating panel '.

Software update

CNC900	bringing in CNC900.RCE or SHOW_E with PROMA.EXE or the operating system management program BV.EXE
CNCOOOC	any increase the exception files into the work directory.

CNC900C	copying of the system files into the work directory
	(BWO standard installation in C:\CNC900C)

1.3.2 CNC CPU

Software components

CNC CPU type :	083671 before index C (without FLASH file system)	083671 from index C (with FLASH file syste	084564 em)
CNC-Betriebssystem	BS900.xxx	BS902.xxx	BS910.xxx
	All 3 files are packed t	ogether in BSxxx.ZIP .	
CNC-DLL (optionally and customized) DLL		DLL3264.xxx	DLL6464.xxx
	Both	files are together packed in	DLLxxx.ZIP.

Information to the FLASH file system (not with 083671 before index C): (see q10:501)

Contents of the FLASH file system with a CNC CPU 084564 look about as follows: (I/O traffic picture)

——— FLASH-DIR ———	
SYSTEM -> BS910.SYS	01.01.1999
BS910.SYS	01.01.1999
PARAM	01.01.1999
Optionally :	
NCZYK	01.01.1999
PLCOBJ	01.01.1999
DLL64 -> DLL910.SYS	01.01.1999
DLL910.SYS	01.01.1999
PLC_BIG	01.01.1999
	date displays: Day, at that the file in the FLASH memory one stored
	(independently of the time stamp of the read in file).

Software components

SYSTEM ->	LINK on CNC operating system This entry is created automatically with the download of an operating system, and points to the CNC operating system.
BS910.SYS or BS910.SY1	CNC operating system (fixed term) Each CNC operating system is stored under this term. Note: With the download of operating systems via I/O traffic alternates extention between SYS and SY1.
PARAM	stored machine data (this file is created with q10:170)
NCZYK	stored NC programs / cycles (this file is created with q10:175/176)
PLCOBJ	PLC file only, if no external PLC is available
DLL64 ->	LINK on CNC-DLL this entry is created automatically with the download of an operating system, and points to the CNC DLL If this entry does not exist, then also no CNC DLL is merged.
DLL910.SYS or DLL910.SY1	CNC DLL (fixed term) Each CNC DLL is stored under this term Note: With the download of operating systems via EA traffic alternates extention between SYS and SY1.
PLC_BIG	Option for PLC program If PLC_BIG is available, becomes the PLC program memory size of 16k statements on 64k statements quadruples. (only with internal PLC in connection with PLC900X version 4.x)

Software version check

CNC operating system : BS9...xxx,

During switching on routine that becomes CNC operating system – Status with date in the line with ' test BS ' displayed.

or

With current control surface in the parameter editor ab q12

q12 : version

q13 : test character

q14 ... q19 : time stamp

CNC DLL : DLL ... xxx,

During switching on routine that becomes CNC DLL system –

Term with date in the line under ' test BS ' displayed.

or

With current control surface in the parameter editor starting from q22

q22 : version

q23 : test character

q24 ... q29 : time stamp

Software update

There are 2 possibilities, in order to execute an update of an operating system status / CNC DLL.

- with the operating system administration program BV.EXE

CNC operating system (see also documentation BV.EXE)

With the function 'FLASH '- 'WRITING ' is selected **the file** BSxxx.ZIP and loaded into the FLASH Memory of the CNC CPU.

(BV looks itself up in the **BSxxx.ZIP** the suitable file to the available hardware. Naturally also **BSxxx.ZIP** would know beforehand unpacked to be become and then the suitable file **BS900.xxx**, @@@**BS902.xxx**or **BS910.xxx** into the FLASH memory be loaded.)

When storing in the FLASH the file name is changed! (e.g. with CNC_CPU 084564 after **Bs910.sys**.

The LINK **SYSTEM** is set on the charged file.

CNC DLL

The flow is the same as with the CNC BS update.

DLLxxx.ZIP is charged or, depending upon hardware, **DLL3264.xxx** or **DLL6464.xxx** . When storing in the FLASH the file name is changed! (e.g. with CNC_CPU 084564 after **DLL910.SYS** .

The LINK **DLL64** is set on the loaded file.

Software update

- via I/O traffic

CNC operating system

(Only with CNC CPU 083671 starting from index C and 084564 in connection with the operating panel CNC900C and at least one CNC operating system version 090 of 21.10.99.) In the EA traffic picture the suitable CNC operating system is marked and knocked against with softkey F5 the copying process. (Same process as NC file copy of hard disk into the NC memory.) The loaded file is checked now for correctness and written into the FLASH memory. All of this is correct, after demand of the LINK is set, in order to use the loaded operating system with the next system start.

The file name, with that is stored the CNC operating system in the FLASH memory is CNC_CPU 083671 starting from index C : **BS902.SYS** CNC_CPU 084564 : **BS910.SYS** The file extention alternates between SYS and SY1 ; i.e. the current LINK is set on **BS910.SYS**, becomes from safety reasons a file: **BS910.SY1**.

CNC DLL

The flow is the same as with the CNC BS update. The file name, with that is stored the CNC DLL in the FLASH memory is CNC_CPU 083671 starting from index C : DLL902.SYS CNC_CPU 084564 : DLL910.SYS The file extention alternates between SYS and SY1; i.e. the current LINK is set on DLL910.SYS, becomes from safety reasons a file: DLL910.SY1. With q11:510 and q10:510 the current CNC DLL can be reset.

Notes

The time stamp in the FLASH file system refers to the time of the downloads!

The loaded operating system may not be packed (.ZIP)!

With q10:501 the flash contents can be checked. I.e. in the I/O traffic picture of the FLASH contents are displayed now instead of NC memory contents.

1.3.3 PLC CPU

Software components

PLC program SPS programm name : customized

Software version check

In switching on routine the picture becomes with ' test PLC ' term, test character and version the PLC of program displayed. or Version check with PLC900X.EXE (see DOKU PLC900X)

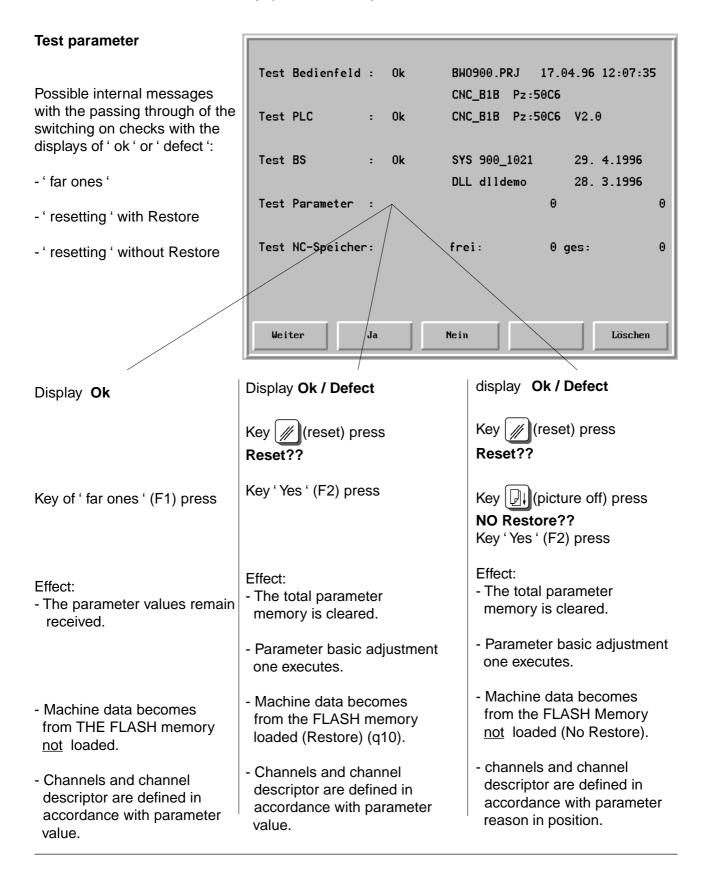
Software update

with PLC900X.EXE (see DOKU PLC900X)

1.4 Notes for the line-up

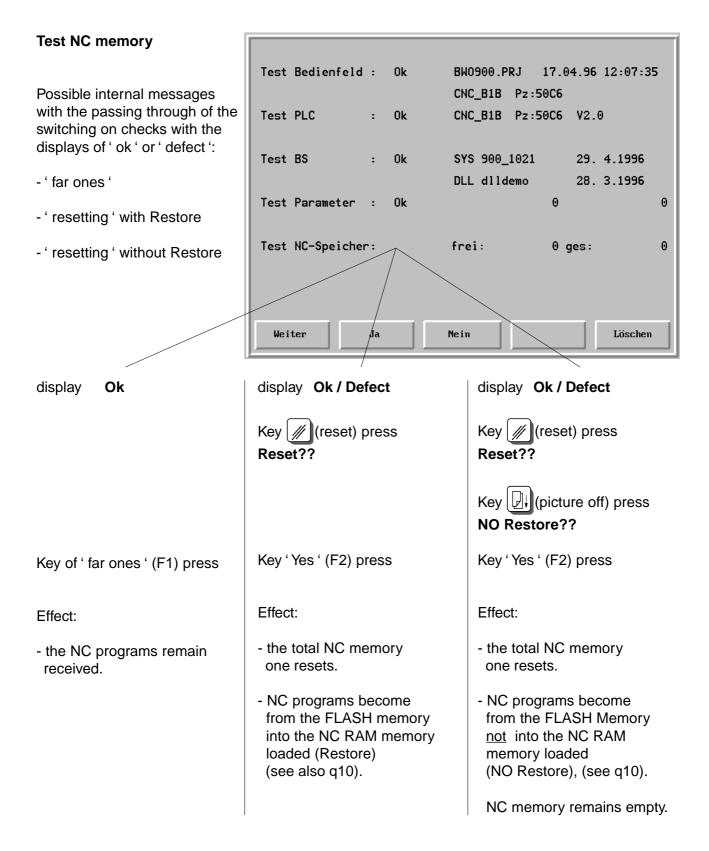
Memory resets (see the also following pages)

With the line-up and with unclear conditions in the FLASH memory the following steps should be executed:

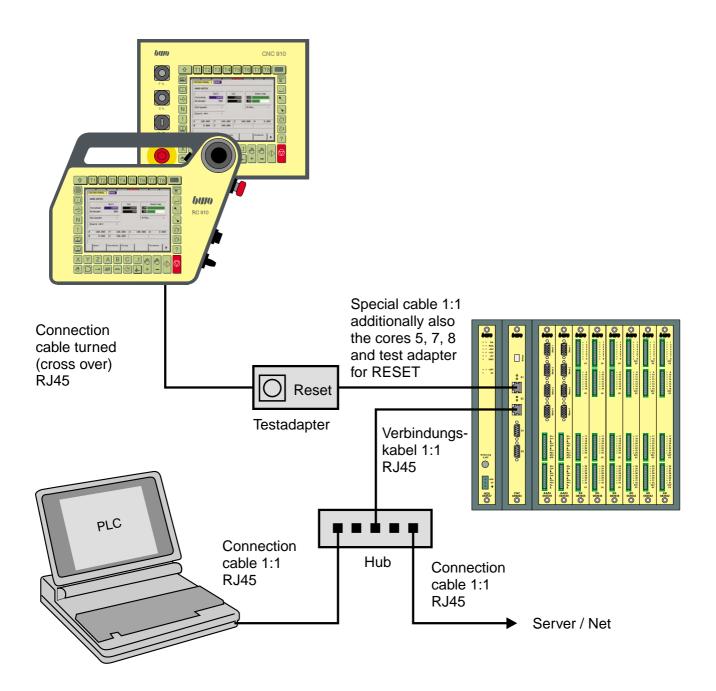

- Passing through of the switching on check with test parameter: No Restore test NC memory: No Restore

Reset parameter and NC memory without store back of machine data and NC programs from the FLASH memory.

- Loading of the machine data (channel descriptors, axis definitions, axis data) over I/O traffic.
- Machine and axis configuration check.
- Memory of the characterized machine data into the FLASH memory of the CPU (see q10).
- System switch off and restart.
- In the switching on checks in the test parameter ' resetting ' ' input Yes ' and in the test NC memory ' resetting ' ' input Yes '.

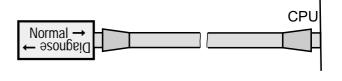


1.4 Notes for the line-up (continuation)



1.4 Notes for the line-up (continuation)

1.4 Notes for the line-up (continuation)



1.4 Notes for the line-up (continuation)

Function of the test adapter

Actual the IP address of the CPU admits: Test adapters toward ' normal \rightarrow ' put to the loading of the operating system.

Actual the IP address of the CPU unknown: Test adapters toward 'diagnosis \rightarrow 'put. Over the RESET key the CPU receives those default IP address 172.16. 20.180

1.5 CNC functions

Version	CNC 32Bit ETH Standard Export	CNC 64Bit ETH Standard Export
Item No	085003 085008	085004 086004
Clock frequency	240MHz	240MHz
Flag memory	60kB	60kB
NC memory	1,5MB	3MB
Memory instructions	16ki	64ki
Parameter	30 000	60 000
Channels	4	8
Axis	16	32
Linear nterpolation in axis	16 4	32 4
Circular interpolation in axis	3 +13 2+1	3+29 2+1
Screw interpolation in axis	2 +14 -	2+30 -
Spline interpolation	• -	• -
Polynom interpolation	• -	• -

• Function is only possible by standard design

- Function is not possible by export version

1.5 CNC functions (continuation)

CPU dependent functions	CNCE (32Bit)	CNC (32Bit)	CNC (64Bit)
Clock frequency	133 MHz	133 MHz	133 MHz
Flag memory NC memory	60 kB 1.5 MB	60 kB 1.5 MB	60 kB 3.0 MB
Parameter	30,000	30,000	60,000
Block cycle time Mounting gel clock	< 6 ms < 3 ms	< 6 ms < 3 ms	< 1.5 ms 250 µs
Channels Axes	2 8	4 16	8 32
Linear interpolation in Circular interpolation in Screw interpolation in Spline interpolation	4 2 + 1 -	16 3 + 13 2 + 14 •	32 3 + 29 2 + 30
Polynomial interpolation	-	•	•

1.5 CNC functions (continuation)

- Several spindles
- Tangential axis
- Axes couple, reflect and exchange
- Restarting after abort
- · Feed, corners, circle and outline dynamics
- Electronic gears
- Handwheel
- Digital and analog drives
- Polar coordinates system
- Polar transformation
- Robot transformation ** / tool coordinates / workpiece coordinates
- Axes and graphic simulation
- · Coordinates turn, reflect and shift
- · Measuring cycles and processing cycles
- Interpolation plane selection
- Tool radius path correction
- Automatic selection of linear and circular interpolation
- · Zero points / zero point shift
- Outline path short programming
- Parameter calculation
- Diagnostic functions
- ** with max. 4 axes by export version

1.5 CNC functions (continuation)

Diagnostic function status

The 7 section display ' status ' shows the hardware status of the CPU on.

Display	Function
Segments circle	everything in order, everything runs ' approximately '.
out	CPU defectively, no voltage, display defectively.
0	CPU in the monitor operation.
8.	hardware RESET.
1 - 9	hardware test after that boats. if status remains 1 - 9, if the hardware test was not ok - > CPU defectively.
b	writing in the flash, do not switch off.
E flashes	error while the loading of the operating system.
E1	fatal error, please at BWO turn.
E2	fatal error, please at BWO turn.
F	operating system is charged from the flash.
F0	hardware error. Module or network failed.
F1	back-up battery defectively.
F2	voltage ±15V defectively.
F3	back-up battery and voltage ±15V defectively.
F4	CPU fan defectively.

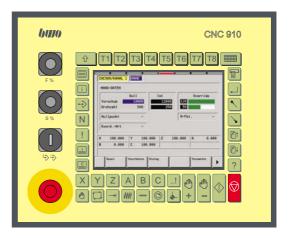
2. Operating

2.1	Operating control functions	2 - 3
2.1.1	Operating panels CNC 910 / CNC 920 / RC 910	2 - 3
2.1.2	Operating panels CNC900 / CNC900C	2 - 15
2.1.3	Manual operating console (Teachpanel)	2 - 26
2.2	Switching on checks	2 - 33
2.2.1	Automatic operational sequence of the switching on checks	2 - 33
2.2.2	Flow of the switching on checks with acknowledgement	2 - 34
2.2.3	Flow of the switching on checks with error displays	2 - 41
2.2.4	Logo	2 - 48
2.3	Points of reference	2 - 49
2.3.1	Points of reference start automatically	2 - 49
2.3.2	Points of reference start by hand	2 - 50
2.4	Display keys and displays	2 - 52
2.4.1	Position of the function keys within the display frame	2 - 52
2.4.2	Adjusting the display brightness	2 - 53
2.4.3	Screen displays in the heading line	2 - 53
2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.5.6	Selection menu Start data Dialog Parameter Machine functions Tool datas Zero points	2 - 56 2 - 60 2 - 71 2 - 75 2 - 83 2 - 83 2 - 85 2 - 88
2.6	Operating modes	2 - 91
2.6.1	Manual operation	2 - 91
2.6.2	Automatic operation	2 - 94

2. Operating

2.7	Diagnosis	2 - 98
2.7.1	Messages	2 -100
2.7.2	PLC	2 -102
2.7.3	Axes	2 -109
2.7.4	Oscilloscope	2 -112
2.7.5	Additional information	2 -117
2.8 2.8.1 2.8.2 2.8.3 2.8.4	NC editor and I/O circulation Selection I/O adjustments Program input Copying	2 -108 2 -120 2 -121 2 -122 2 -122 2 -124
2.9	Program input according to DIN / ISO	2 -132
2.10	Program input also Teach in	2 -137
2.10.1	Zero points setting	2 -137
2.10.2	Program input with Teachen	2 -138
2.11	Program input with graphic support (outline path)	2 -139
2.11.1	General	2 -139
2.11.2	Inserting a point	2 -145
2.11.3	Inserting a Straight line	2 -146
2.11.4	Inserting an arc	2 -151
2.11.5	Inserting a chamfers or roundness	2 -156
2.11.6	Editing	2 -162

2.1 Operating control functions

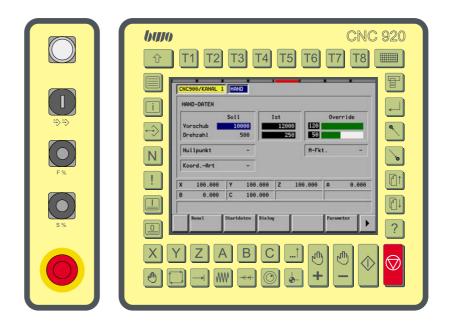

2.1.1 Operating panels CNC 910 / CNC 920 / RC 910

The operating panels are conceived for the application at CNC controllers. The fully diagramable color LC display and foil keyses with mechanical pressure point facilitate the operation.

Standard design CNC910

Dimensions 277mm x 227mm (width x height)

Machine operating panel integrates



Standard design CNC920

Dimensions 328mm x 310mm (width x height)

Machine operating panel separately

Dimensions 80mm x 310mm (width x height)

Operating panels RC 910

The operating panels have an ergonomic and manualfair form with a fully diagramable color LC display and foil keyses with mechanical pressure point, which facilitate the operation.

Dimensions 310mm x 240mm (width x height)

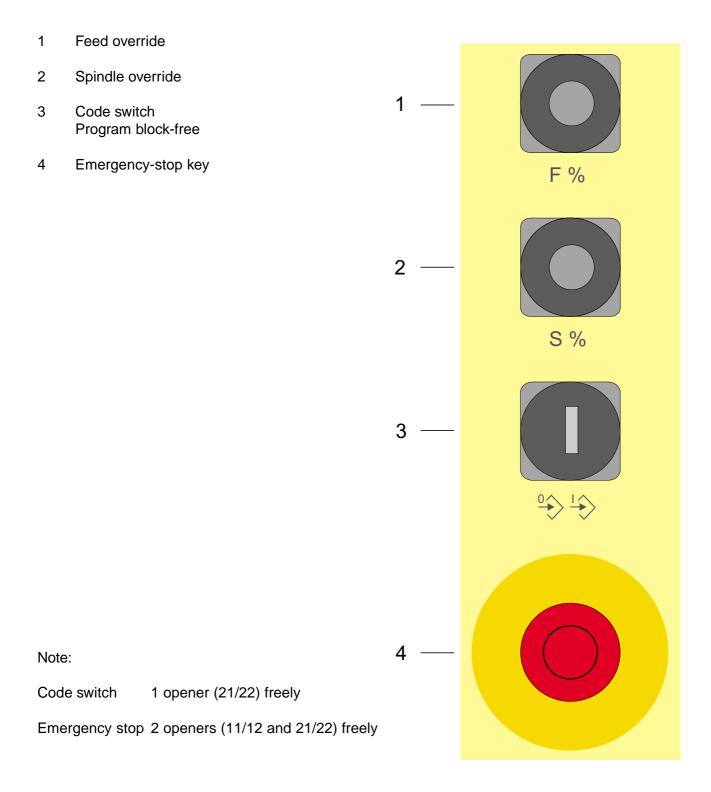
Standard version RC910

are suitable for the application as mobile operating panels at CNC controllers or as additional manual operating console for a firmly built in operating panel.

Execution with handwheel RC910

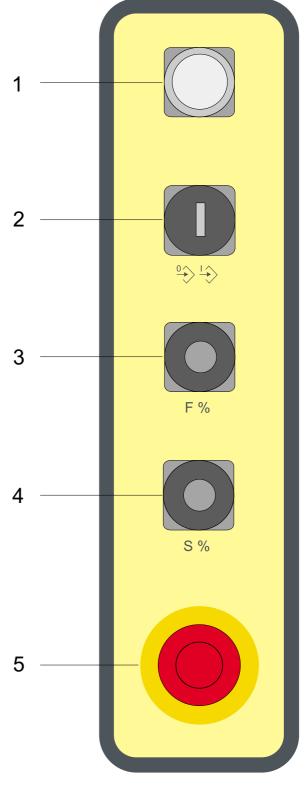
are suitable for the application as mobile operating panels at CNC controllers or as additional manual operating console for a firmly built in operating panel.

Execution with joystick RC910


is appropriate for the application at robotic controls. In this execution robot and manual axes can be moved three-dimensional in each case.

2.1.1 Operating panels CNC 910 / CNC 920 / RC 910 (continued)

Machine operating panel CNC 910



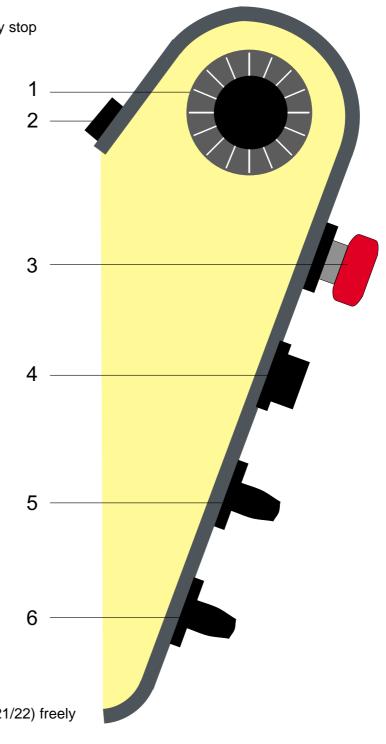
2.1.1 Operating panels CNC 910 / CNC 920 / RC 910 (continued)

Separate machine operating panel CNC920

- 1 Illuminated push button
- 2 Code switch Program block-free
- 3 Feed override
- 4 Spindle override
- 5 Emergency-stop key

Note:

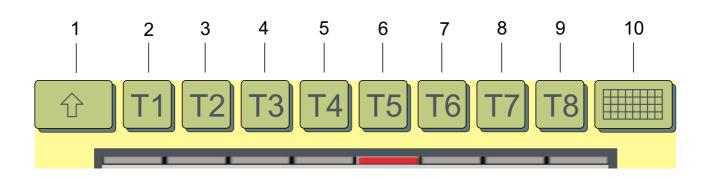
Code switch 1 opener (21/22) freely


Emergency stop 2 openers (11/12 and 21/22) freely

2.1.1 Operating panels CNC 910 / CNC 920 / RC 910 (continued)

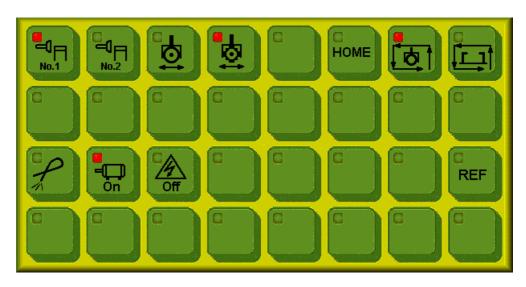
Machine operating panel RC910

- 1 Handwheel or joystick, during standard version emergency stop
- 2 Release button
- 3 Emergency stop with handwheel and joystick
- 4 Code switch Program block-free
- 5 Feed override
- 6 Spindle override (not with joystick)

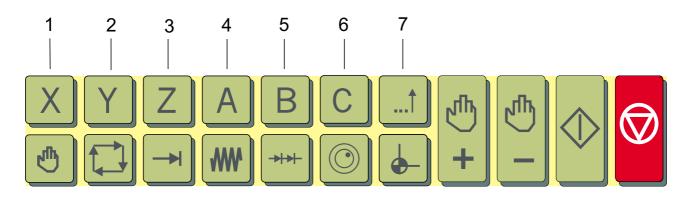


Code switch 1 opener (21/22) freely

Emergency stop 2 openers (11/12 and 21/22) freely

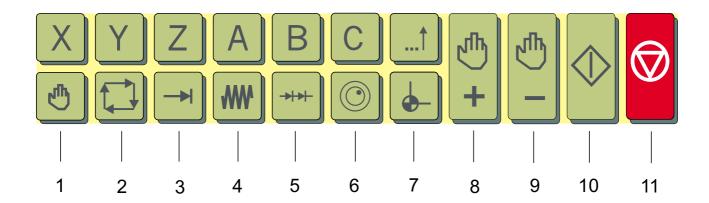

Control keys for PLC functions

1 Shift


In connection with further keys special functions can be released, e.g. can with editor on / off the touch screen activated or deactivated become (to the cleaning of the screen).

- 2 to 9 8 PLC keys with LED on the display can by the user as desired be marked (with label strip e.g. T1 to T8).
- 10 additional 32 PLC keys with LED on the Touch screen The PLC additive keys can be designated by the user as desired, e.g.:

Control keys for axis selection



- 1 bis 6 6 axis keys Can by the user as desired be marked (with label strip e.g. X, Y, Z, A, B, C).
- 7 12 axis keys on the Touch screen, Can by the user as desired be marked e.g.:

CNC900/KANAL 1	HAND					
HAND-DATEN						
	Soll	Is			Overni	ide
Vorschub	10000		12000	120		
Drehzat X	Y	Ζ	A	В	C	
Nullpur		_				-
Koord U	V	W	D	Е	L	
					J. Landard	
X 100.000	Y 100.	.000	Z 10	0.000	A	0.000
B 0.000	C 100.	.000				
Kana l	Maschinen- Funktionen	Werkzeu Plätze	g- Werl Date	czeug- :n	Nullpunk	te

Control keys for modes of operation

1 Manual mode

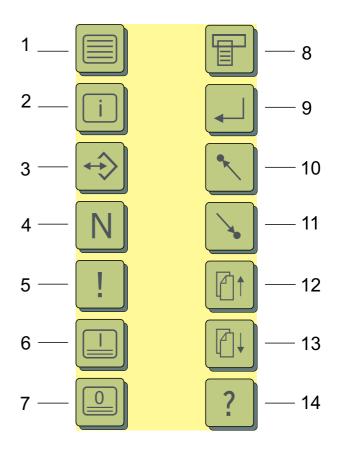
2 Switching in automatic mode:

With the 1. Pressures becomes the sequential block adjusted. Afterwards becomes when each pressing key between sequential block and single block back and forth switched.

3 Switching in positioning mode

4 Continuous traversed in the manual mode

5 Step by step traversed in the manual mode, incrementations freely definably


- 6 With handwheel traversed
- 7 Automatic home position and travel of point of reference
- 8 und 9 Push buttons for traversing the selected axis with manual mode
- 10 und 11 start and stop
 - The automatic program sequence is started or stopped
 - in the positioning mode: The NC block in the indication area is processed.
 - in the automatic mode: The selected NC program is worked on.

2.1.1 Operating panels CNC 910 / CNC 920 / RC 910 (continued)

Control keys for program input and data communication

- 1 Key function freely shapable, e.g. graphic simulator.
- 2 Key function freely shapable, e.g. cycle or info. pictures.
- 3 I/O circulation Selection of the I/O menu to the data communication
- 4 Block editor
- 5 Diagnosis Information about conditions, interfaces, parameters.
- 6 Editor on
- 7 Editor off
- 8 Menu selection
- 9 Enter
- 10 und 11 Beginning / end
- 12 und 13 Picture up / down
- 14 Additional information Information about lining up NC program.

Touch screen keys for manual mode and program input

Opening display Selection menu	CHC900/KANAL 1	HAND		
Menu screen 1	HAND-DATEN			
		Sol1	Ist	Override
	Vorschub	10000	12000 12	20
	Drehzah1	500	259	50
	Nullpunkt	-	M	-Fkt
	KoordArt	-		
	X 100.000	Y 100.000	9 Z 100.00	0 A 0.000
	B 0.000	C 100.000	9	
Selection keys on the touch screen	Kana I	Startdaten Dia	log	Parameter

Switching between the menu screens with key (roll function)

X	100.000	Y 100	.000 Z	100.000	A 0.6	88
В	0.000	C 100	.666			
	Kana I	Haschinen- Funktionen	Werkzeug- Flätze	Werkzeug- Daten	Nullpunkte	•

Touch screen keys for input with numeric keyboard

The cursor press and shift on a wished input field .

The numeric keyboard will during contact an input field faded in.

Input break off: With the finger press on not with input fields occupied place on that display.

CNC900/KANAL	HAND	Numeric		
HAND-DATEN		18689		
	Soll	7	8	9
Vorschub	10000			
Drehzahl	500	4	5	6
Nullpunkt	-	1	2	3
KoordArt	-			
X 100.000	Y 16	-	Θ	. H
B 0.000	C 16			H
		CL	>	ок
Kana I	Maschinen- Funktionen	Werkzeng- Plätze	Werkzeng - Daten	Nullpunkte

Requires the input field hexadecimal input, will the hexadecimal keyboard faded in.

With 2 x pressures on '-' indication becomes between decimally and hexadecimal keyboard around switched.

			-	Huneric				
C	IC988/KAN	AL 1 HANG		\$10001				
Ρ	12039:	-	۲c	7	8	9	A	в
P	12040:	θ	R					
P	12841 :	-	He					
P	12042:	-	Zı	4	5	6	С	D,
P	12043:	-	Re					
P	12844:	00010001	Re	1	2	3	Е	F
P	12845: 🕯	88888888	He				_	
P	12046:	-	Fo					
X	100.0	999 Y	16	-		0		
В	0.6	000 C	24					
_			_	CL		>		ок

Touch screen keys for input with ASCII keyboard

With the program input will a ASCII keyboard faded in.	CNC900/KANAL 1 HAND M18 G45 G98 G54 22 P168:8 P161:8 P163:8 F2888 M24:4 N20 X10 Y0 M38 G81 2-1.5
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	TAB Q H E R T Z U I O P Ü 🔭
	SLOCK A S D F G H J K L Ŭ Ä 🚡
	SFT 2: Y X C V B N H 1 I I SHIFT
	Strg <> Alt
	X 109.000 Y 100.000 Z 109.000 A 0.000
	B 0.000 C 100.000
	Zurück Speichern

Special functions with WINTERM

The ASCII keyboard can be switched by hand:

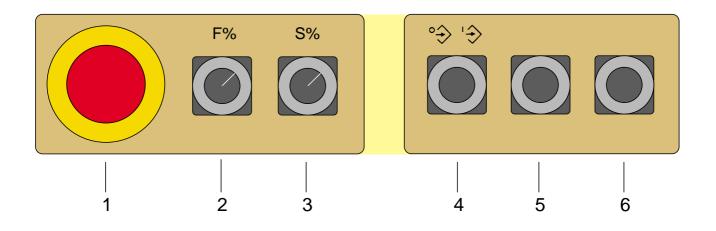
on / off 🗘 📳

The contrast of the announcement of the ASCII keyboard can be adjusted. It can be struggled so far that the keyboard appears only as background picture.

The key functions remain.

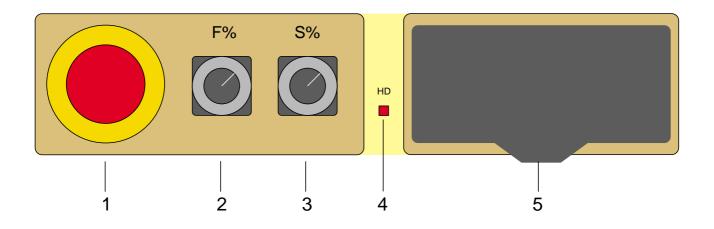
However one can read now also the text, which is under the keyboard.

Contrast of the announcement:



2.1.2 Operating panels CNC 900 / CNC 900C

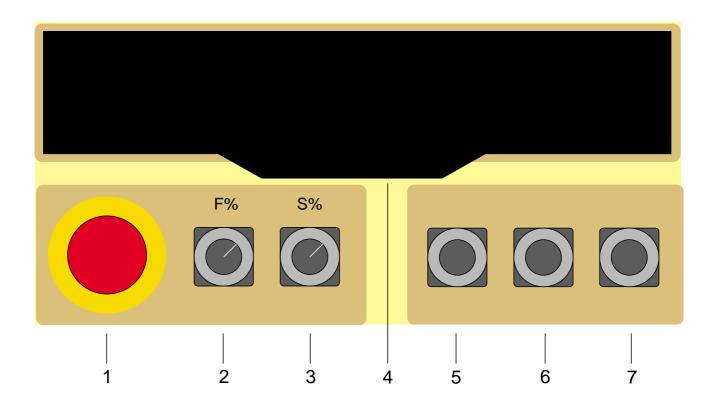
				789
	IC900/KANAL 1 HAND X	Step 0.01		123
	IAND-DATEN Soll	Ist Override		±0.
	Vorschub 10000 Drehzahl 100	12000 0		
	Nullpunkt -	H-Fkt.	-	
	KoordArt -			
×	0.000 Y 0.0			
	Kanal Startdaten	Dialog Parame	ter	$\leftarrow \rightarrow$
	= -			
	F% S%			
				ENG 900
XY	ZABC		! 🔿	
XY) ? N / **		
XY				
XY				


Operating controls for control functions CNC900

- 1 Emergency-stop key During the pressing of the key all movements of the machine are interrupted (analysis in interface control).
- 2 to 6 User or machine-specific allocation with CNC900C. for example feed and spindle Override or programming block / freely.

Operating controls for control functions CNC900C

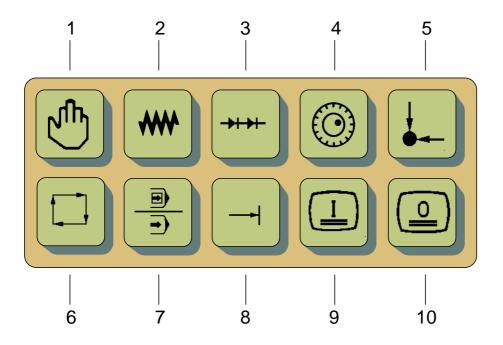
- 1 Emergency-stop key During the pressing of the key all movements of the machine are interrupted (analysis in interface control).
- 2 to 3 User or machine-specific allocation with CNC900C. for example feed and spindle Override or programming block / freely.
- 4 Light emitting diode hard disk drive
- 5 Dikettenlaufwerk 3.5 "


Operating controls for control functions CNC900C with Windows operating system

CNC390/KANAL 1 FAND X Step 0.01 HAND-DATEN Vorschub 10000 Drehzahl 100 Worschub 10000 Drehzahl 100 Worschub 10000 Worschub Nord KoordArt Nord Kanal Startdaten Bialog Parameter	789 456 123 ±0. \$ * 1 * * + +
	DUDD CNC 900 C
	00
XYZABC I?!+> N/++oP	
	H ₁ H ₂ H ₃ H ₄ H ₅ H ₆

2.1.2 Operating panels CNC 900 / CNC 900C (continued)

Operating controls for control functions CNC900C with Windows operating system

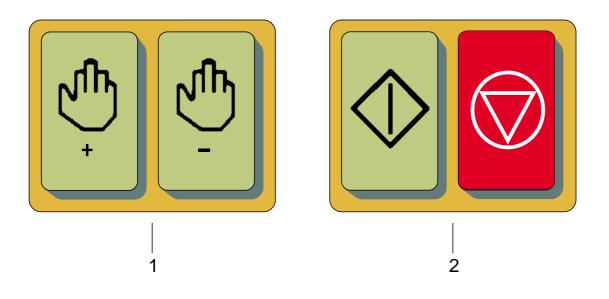

1 Emergency-stop key

During the pressing of the key all movements of the machine are interrupted (analysis in interface control).

- 2 to 3 User specific or machine-specific allocation with CNC900C.
- 5 to 7 For example feed and spindle Override or programming block / freely.
- 4 Floppy disk drive 3.5 " and CD ROM drive

Operating controls for operating modes

- 1 Manual mode. The selected axes can be moved with the manual keys.
- 2 Continuous traverse during manual mode.
- 3 Step by step traverse during manual mode. steps can be defined arbitrarily.
- 4 Traverse during manual mode with handwheel.
- 5 Approach home position in manual mode.
- 6 Switch on automatic mode (sequential block).
- 7 Changeover single/sequential block during automatic mode.
- 8 Switch on positioning.
- 9 Editor on
- 10 Editor off


Operating controls for axes selection

- 1 Axes keys
- Selection: during manual mode for traversing the axes during automatic mode for displaying actual values when the NC program is input.

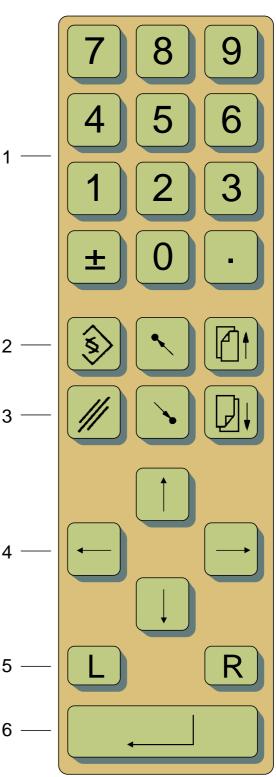
Operating controls for manual and automatic functions

1 Manual keys During manual mode for traversing the selected axis

2 Start and Stop

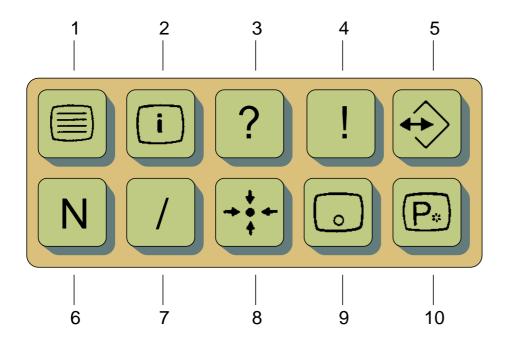
The automatic program sequence is started or shut down

- in positioning mode: the displayed NC block is worked.
- in automatic mode: the selected NC program is worked.



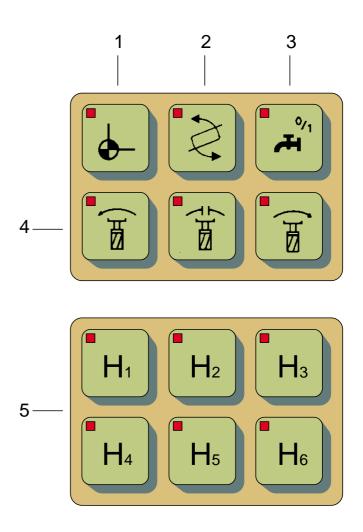
Operating controls for program inputting

- 1 Numerical keyboard 0 to 9. Prefix +/- and decimal point
- 2 Keys (seen from left side) 'Change' 'Pos 1' 'page up'
- 3 Keys (seen from left side) 'Clear' 'End' 'page down'
- 4 Cursor keys
- 5 Enter Selected enter mode is activated and program data stored.


Note to adjusting the display brightness

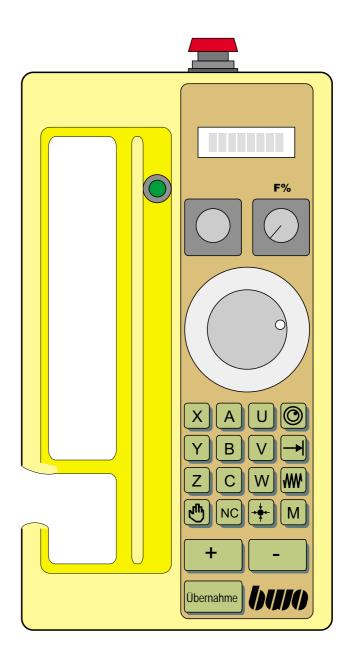
With F6 (within the display frame down on the right) and 6 ' picture up ' display becomes continuously brighter. ' picture down ' display becomes continuously darker.

Operating controls for display and data transfer



1 Graphics <-> Normal Changeover between graphics and normal. 2 Cycle patterns Display menu of all cycles provided. 3 Supplementary information Informations on current NC program. 4 Diagnosis Informations on status. interfaces. parameters. 5 I/O Selection of I/O menu for data transfer. 6 Block input Cursor jumps to block number. 7 during inputting of block and Start menu. Skip block 8 Target-value = actual-value displayed actual-values are accepted as the programmed values. 9 Clear screen When inputting the block. the old block is cleared. Parameter calculation Parameter calculation can be carried out when the block 10 is being input.

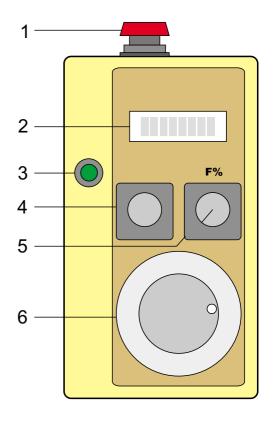
Operating controls for machine functions


The machine functions are machine-specific and are determined in the interface. A keyset is already provided on the operating panel for these functions so that extra keyboards are not necessary. The occupation is only an example.

- 1 Automatic referencing
- 2 Tool change
- 3 Coolant on/off
- 4 Spindle left-handed rotation / stop / right-handed rotation
- 5 Help functions

2.1.3 Teachpanel

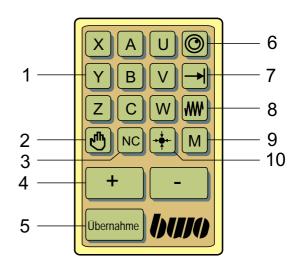
Note!


Off safety reasons may the manual operating console (TP) only with switched off machine to the main operating console (CNC900) to be connected or from it separated.

2.1.3 Teachpanel (continued)

Operating controls for control functions

- 1 Emergency-stop switch
- 2 Display field
- 3 Release button
- 4 Key-operated switch
- 5 Feed override
- 6 Handwheel



2.1.3 Teachpanel (continued)

Operating controls for axes selection and for operating modes

- 1 CNC keys X, Y, Z, A, B, C, U, V, W
- 2 Manual operating mode
- 3 NC editor
- 4 +/-
- 5 Enter
- 6 Handwheel operating mode
- 7 Step by step operating mode
- 8 Continuous operating mode
- 9 PLC keys, G functions
- 10 Target-value = actual-value

2.1.3 Teachpanel (continued)

Functions

Emergency-stop switch

With the application of this switch, all machine movements are stopped immediately (evaluation in the interface control).

Key-operated switch

The teachpanel is switched on and off with the key-operated switch. The machine operating panel is also activated/deactivated simultaneously by this action.

Attention:

The teachpanel has to be switched on before you enter the machine area of risk and before switching off the teachpanel, you have to leave this area.

Release button

For safety reasons, the release button circuit is required to be connected in such way that the axes can only be moved as long as the button is depressed.

When it is released, all axis movements should come to an immediate standstill.

Feed override

The programmed feedrate (manual data in P8755) can be steplessly adjusted with the feedrate potentiometer.

Display

The display field consists of a single line of eight characters.

When switching on the teachpanel, the display 'TP active' appears.

2.1.3 **Teachpanel (continued)**

When pressing an axis key, the corresponding LED is switched on. The actual value appears in the display. Non existing axes can not be selected. Only one axis can be selected at a time.

When switching on the teachpanel, no axis is selected.

The operating mode 'continuous' is selected with this key. When pressing the key, the LED is switched on.

The selected axes can be moved with the key + or -.

Step by step operating mode

The operating mode 'step' is selected with this key. When pressing the key, the LED is switched on. The actual step width appears in the display (e.g. 0,01; 0,1; 1; 10). In the list of parameter P8763 to P8769 you can find the selectable step width.

The step width can be switched over by pressing the key again.

The selected axes can be moved with the key + or -.

Handwheel operating mode

When pressing the key handwheel, the corresponding LED is switched on. The actual handwheel factor HF (e.g. 1, 10, 100) appears in the display. In the list of parameter P11407 to P11409 you can find the selectable handwheel factor.

The handwheel speed factor can be switched over by pressing the key again.

2.1.3 Teachpanel (continued)

Manual operating mode

This key starts the manual operating mode. The LED is switched on when pressing the key. When the key is pressed, the actual feed appears in the display. Further operating modes are not acceptable on the teachpanel.

Menue M


This key activates a menue for the simulation of PLC keys 1-12.

When pressing the key again, the G-functions G1, G2, G3, G123 appear which can be selected with the keys + / - and they can be input in the block editor with enter.

Target = Actual

The actual position of the axes set in parameter P8747 are overtaken to the block editor with target = actual.

The block is stored with the key enter.

The selected axis moves in positive / negative direction with the selectedmode (continuous / step / handwheel).

With these keys

- you can scroll the block number while the NC editor (display 'n' + block number) is active,
- you can move the axes in manual operating mode or active block editor (display 'N' + block number)
- you can scroll PLC keys and G-functions when the menue is activated (key M).

2.1.3 Teachpanel (continued)

NC editor NC

The NC editor is called up with the key NC.

The program which is activated by pressing NC is specified in the parameter P11145 and the block number is specified in the parameter P11146.

In the display of the main operating panel, the actual program with 'n'+block numbers appears. A block can be selected in the program with the keys + / -.

The block editor with the selected block is called up with the key enter.

In the display of the main operating panel, the actual block with 'N'+block number appears now. The block can be edited now. E.g. the actual positions can be overtaken at the teachpanel with target = actual. Further modifications of the NC block are possible parallel to this at the main operating panel.

The NC block is stored by pressing the key enter again.

At modifications within a program, the display 'n'+block number appears again in the main operating panel. If a block was edited at the program end, 'N'+block number appears in the display of the main operating panel. A new empty block is inserted with a new block number, that consists of the last block number +10.

Enter

Function in the NC program: The selected NC block is stored in the block editor with the key 'enter'.

Menue function:

The selected PLC key is transmitted to the PLC with the key enter or the G-function standing in the display is written into the block.

2.2 Power on tests

The display field is activated after swichting on the control. The control starts a self-test. The position of the key-operated switch 1 (P11000) determines the course.

2.2.1 Automatic power on tests

If the key-operated switch is closed (position 1), the power on tests are running automatically, if no errors appear (e.g. def. parameter or def. NC memory).

Closed switchPosition 1Automatic power on testOpen switchPosition 0Power on test has to be activated with pressing a key.

2.2.2 Power on test with confirmation

Test operating panel

First, the operating panel is tested (takes some seconds).

Test Panel	:			
Test PLC	:			
Test BS	:			
Test Parameter	:			
Test NC-Memory	:	free:	tot:	
Continue	Yes	No		Delete

Here the function keys "Continue" and "Yes" and "No" are used combined with the key (Delete).

Test operating panel

After a successful test, the following display appears:

Test Panel	: 0k	BW0900.PRJ CNC_C4A Pz:	10.01.97 10:56:53	2
Test PLC	:	0.00_0.11 12.	5025	
Test BS	:			
Test Parameter	:		Θ	0
Test NC-Memory	:	free:	0 tot:	Θ
Continue	Yes	No	Delete	

Meaning:

- Line 1 Project name of the PROMA surface with date and time of making the surface (SHOW_E).
- Line 2 PLC program, from which the symbols are taken, with check sum.

Test PLC program

After a successful test, the following display appears:

Test Panel	:	0k	BW0900.P	RJ 10.	.01.97 10:56:5	2
			CNC_C4A	Pz:D628	}	
Test PLC	:	0k	CNC_C3E	Pz:D755	5 V2.0	
Test BS	:					
Test Parameter	:			0		0
Test NC-Memory	:		free:	0	tot:	0
Continue	Yes		No		Delete	
	ies					

Meaning:

Line 3 Actual PLC program with check sum and number of version

Note: Program name and check sum of the PLC program (operating panel) from which the symbols are taken, and of the actual PLC program should be the same (line 2 and 3). If the names or check sums are different, it has to be checked if the symbols used in the surface have the same position as they do in the actual NC program.

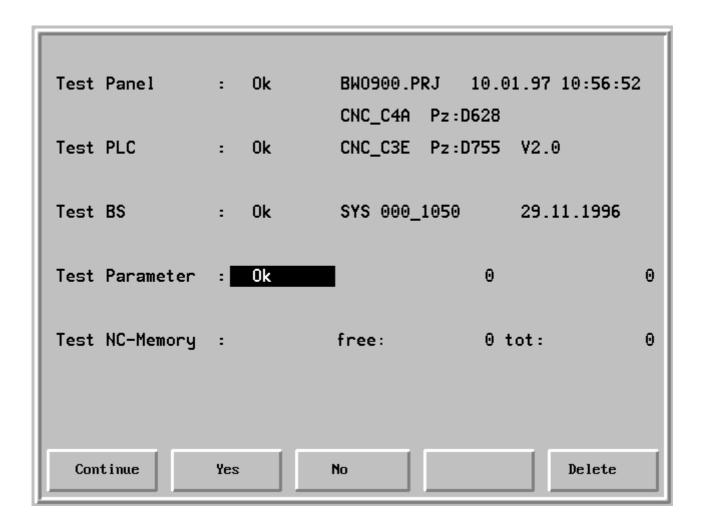
Test operating system

After a successful test, the following display appears:

Test Panel	:	0k	BW0900.PRJ 1 CNC_C4A Pz:D6	L0.01.97 10:56:52	2
Test PLC	:	0k	CNC_C3E Pz:D7		
Test BS	:	0k	SYS 000_1050	29.11.1996	
Test Parameter	:			Θ	0
Test NC-Memory	:		free:	0 tot:	0
Continue Yes No Delete					

Meaning:

Line 4 CNC standard operating system with version and date


Line 5 Option: DLL-software for customer-specific operating system enlargements with name and date

Test parameter

After pressing the function key "Continue", the parameter memory is checked.

The following display appears after a successful test:

Meaning:

Line 6 The parameter memory is all right.



2.2.2 Power on test with confirmation (continued)

Test NC memory

After pressing the function key "Continue", the NC memory is checked.

The following display appears after a successful test:

Meaning:

Line 7 NC memory is all right Indicating free memory and complete memory

2.2.2 Power on test with confirmation (continued)

Finish power on test

After pressing the function key "Continue" the power on test is finished and the system is loaded (takes some seconds).

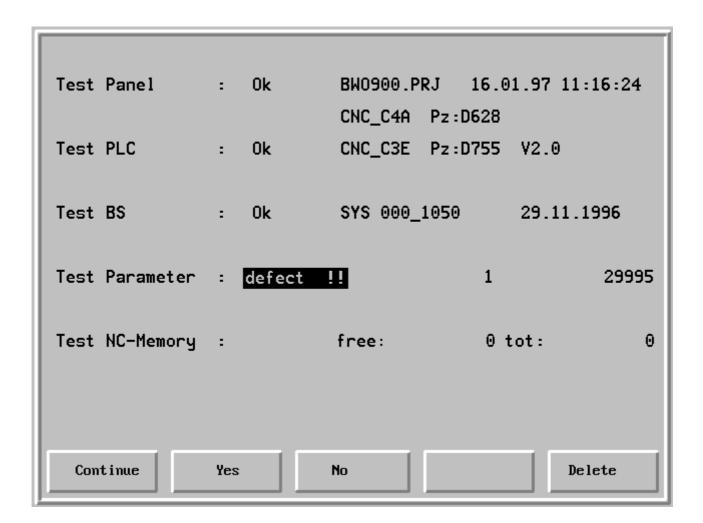
The following display appears after a successful test:

Test Panel	:	0k	BW0900.P	PRJ 10.0)1.97 10):56:52
Test PLC	:	0k	_	Pz : D628 Pz : D755	V2.0	
Test BS	:	0k	SYS 000_	_1050	29.11	.1996
Test Parameter	:	0k		Θ		Θ
Test NC-Memory	:	0k	free:	1448704 ·	tot:	1542656
		Ι				
Continue	Yes		No		D	elete

Then, the company sign appears.

2.2.3 Power on test with error

PLC test


If the following display appears, the PLC program is defective. The power on test is stoped. In this case, the PLC program has to be loaded again and has to be stored in the EEPROM.

Tast Desal	. 04		16 01 07 11 16 2	
Test Panel	: 0k	CNC_C4A Pz:D	16.01.97 11:16:24 628	ł
Test PLC	:defect !	CNC_C3E Pz:D	755 V2.0	
Test BS	:			
Test Parameter	:		Θ	0
Test NC-Memory	:	free:	0 tot:	0
Continue	Yes	No	Delete	

Parameter test

The following display appears if the parameter memory is defective. The power on test is stoped.

Meaning:

Line 6 Display of the first defective parameter (q) and the number of defective parameters. In exceptional cases it can be practical, despite defective parameters the switching on check to continue. This actual with key $\$ possible.

Parameter test

The power on test is only continued if the key *(M)* (Delete) is pressed. The following display appears.

Test Panel	: 0k	BW0900.PRJ 1 CNC_C4A Pz:D6	6.01.97 11:16:24
Test PLC	: 0k	_ CNC_C3E Pz:D7	
Test BS	: 0k	SYS 000_1050	29.11.1996
Test Parameter	: delete	??	1 29995
Test NC-Memory	:	free:	0 tot: 0
Continue	Yes	No	Delete

Delete ??

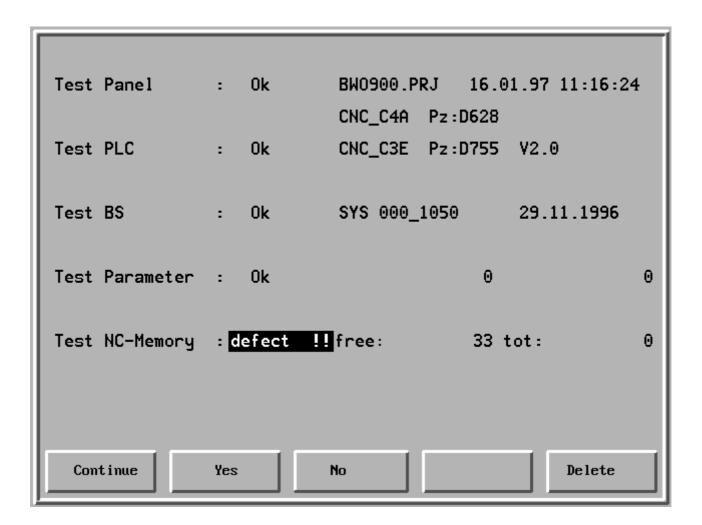
Key "Yes" Delete the complete parameter memory

Key "No" The parameter memory is not deleted. Go on to test NC memory with pressing the key "Continue"

Parameter test

After Delete ? and pressing the key "Yes" the following functions are loaded

- BWO presettings
- customer-specific data from the EEPROM.


Test Panel		Ok	BW0900.PF	RJ 16.	01.97 11	:16:24
			CNC_C4A	Pz : D628	I	
Test PLC	:	0k	CNC_C3E	Pz : D755	V2.0	
Test BS	:	0k	SYS 000_1	1050	29.11.	1996
Test Parameter	:	restore	-	1		29995
Test NC-Memory	:		free:	0	tot:	Θ
Continue	Yes		No		De	elete
	100					

Go on to test NC memory with pressing the key "Continue"

Test NC memory

The following display appears if the NC memory is defective. The power on test is stoped.

Meaning:

Line 7 Error code (33) and additional information (0)

In exceptional cases it can be pra-	tical, despite defective NC Speichers the switching on check
to continue. This actual with key	S possible.

Test NC memory

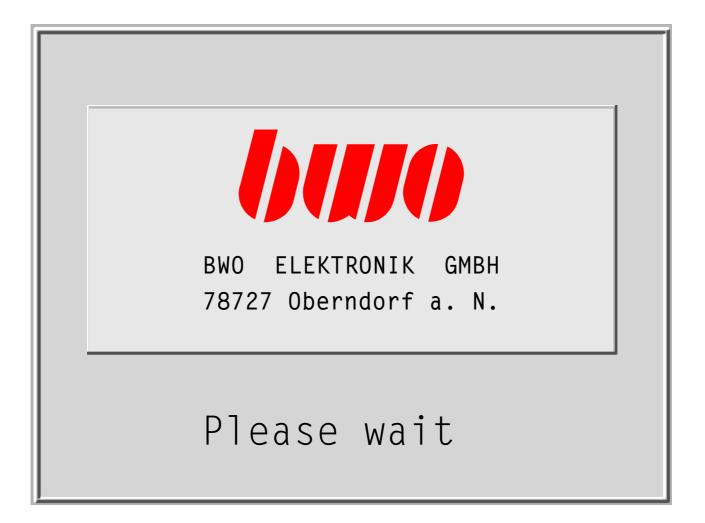
Meaning of the error codes

Code	Meaning
02	Program not found
05	End of program or Write-/ Read indicator > program size
06	No free memory
09	Faulty check-sum
10	Error when reading from NC memory
11	Error when writing on NC memory
15	No program input, e.g. key-operated switch locking
16	Program should be opened for writing, but is already opened
25	Key-operated switch interlocking
30	Defective directory chain
31	Defective program chain
32	Defective list of free blocks
33	Defective check-sum of system data
35	Blocks in program system are double-chained

Test NC memory

The power on test is only continued if the key *(M)* (Delete) is pressed. The following display appears.

				T
Test Panel	:	0k	BW0900.PRJ 16.01.97 11:16:24	l
			CNC_C4A Pz:D628	l
Test PLC	:	0k	CNC_C3E Pz:D755 V2.0	l
				l
Test BS	:	0k	SYS 000_1050 29.11.1996	l
Test Parameter	:	0k	0 0)
Test NC-Memory	. 2	lalata 21	free: 33 tot: 0	
Test NC-Hemory	: 0	lelete ?	rree: 55 tot: 0	'
				l
Continue	Yes		No Delete	1
				4


Delete ??

Key "Yes" Delete complete NC memory

Power on test is finished with pressing the key "Continue" and the company sign appears.

2.2.4 Company sign

CNC 900 OPERATING

2.3 Reference points

Reference points are machine-specific mechanical fixed points.

After the power on tests, you have to approach with each axis the corresponding reference point, if the machine works in the incremental measuring system. The reference point is stored and the actual value display is set with the correct value. In the first line of the display field, the axes of which the reference point is not stored, are shown.

Because the traverse directions for taking reference points are depend on the machine, the following explanation can only be an example.

Note: The reference point must not be identical with the machine zero point.

2.3.1 Approaching reference points automatically

The reference points can be approached automatically, if a corresponding program is stored in the PLC. The key $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \end{bmatrix}$ is reserved for this program.

2.3.2 Manual approaching of reference points

Requirements

- Power on tests are ready.
- The control is switched on (key "Control on" is pressed)
- The operating mode "Manual" is set.
- The feed for manual mode is given, feed override > 0.
- The drive mode is set (e.g. "continually").

Approach reference point of an axis, e.g. X-axis

Press key "X"

Display: MANUAL X Cont Ref: X Y Z A B

Press key "Manual" until max. end position of the X-axis is reached.

CNC900 /CHAN	.1 MANU X	Cont	REF:X Y Z A B			
MANUAL-DATA						
	Command	Actual	Override			
Feedrate	10000	8000	80			
Speed	2000	0	35			
Zero Point	-		M-Fct			
Coord-Sys	-					
X 1420.00	90 Y 7	7.150 Z	0.143 A 30.286			
B 9.84	42					
Channel Start Data Dialog Parameter						

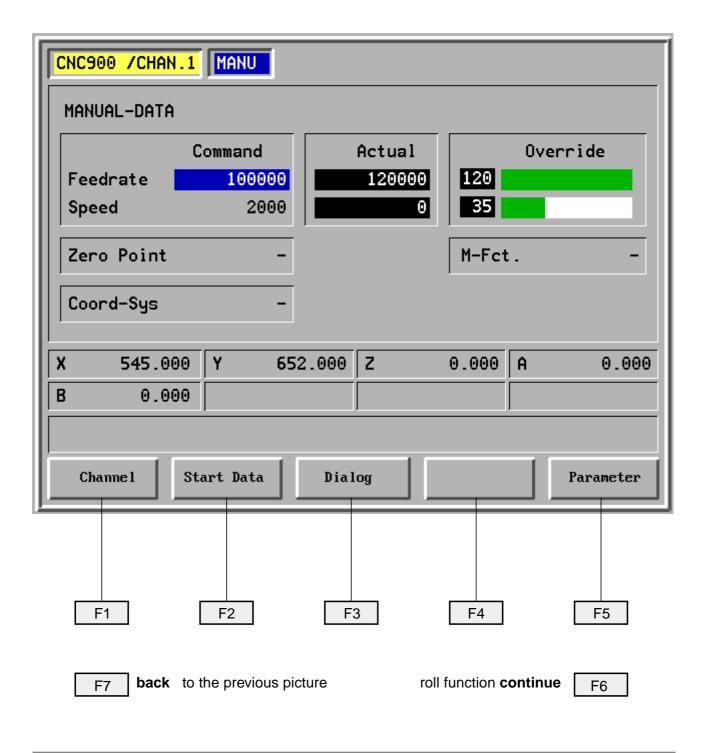
CNC 900 OPERATING

2.3.2 Manual approaching of reference points (continued)

Approach reference point of an axis, e.g. X-axis

Then press "Manual" until the X disappears from the display.

Display: Manual X Cont REF: Y Z A B


Now the reference point for the X-axis is stored.

The same procedure is valid for the other axes.

CNC900 /CHAN.1 MANU X Cont REF: Y Z A B						
MANUAL-DATA						
	Command	Actual	Override			
Feedrate	10000	12000	120			
Speed	2000	Θ	35			
Zero Point	-		M-Fct			
Coord-Sys	-					
X 1420.00	90 Y 7	7.150 Z	0.143 A 30.286			
B 9.84	42					
Channel Start Data Dialog Parameter						

- 2.4 Screen keys and screen displays
- 2.4.1 Position of the function keys in the screen frame

CNC 900 OPERATING

2.4.2 Setting the screen brightness

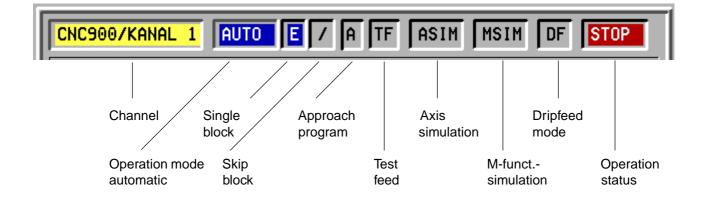
The brightness of the screen can be set continuously.

When pressing the function key "F6" and

(Page up) the creen becomes brighter,

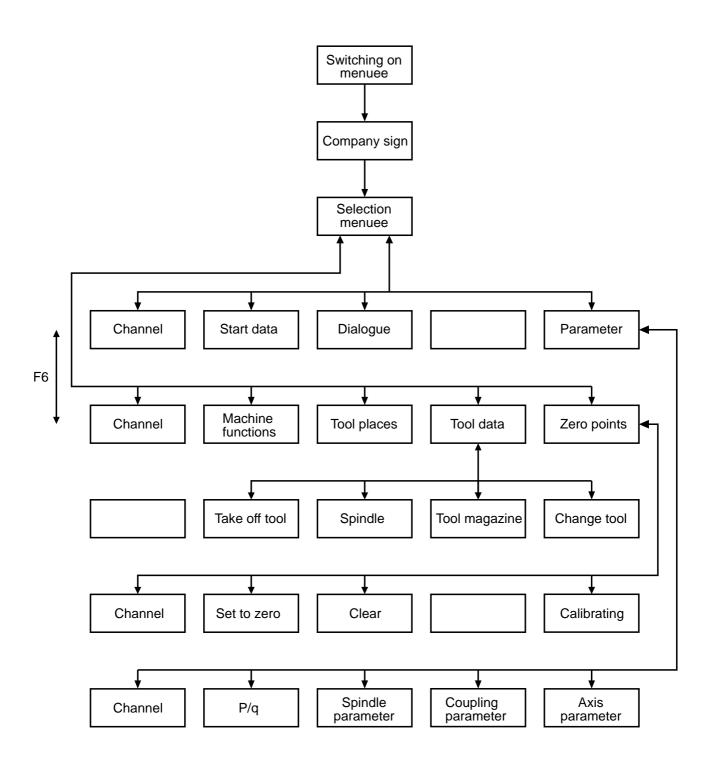
(Page down) the screen becomes darker.

2.4.3 Screen display in the headline


Displays in manual mode

CNC900 /CHAN.1 MANU X Cont
Channel Operation Axis Travelling mode
mode manual identification continuously
CNC900 /CHAN.1 MANU X Step 0.01
Channel Operation Axis Travelling Step mode manual identification mode step width
CNC900 /CHAN.1 MANU Y HW:1 1
Channel Operation Axis Hand Division

2.4.3 Screen display in the headline (continued)


Displays in automatic mode

2.5 Selection menue

Menue tree

2.5 Selection menue (continued)

All functions can be selected with the selection menue with the function keys F 1 to F7. The menue consists of two function pictures. **Selection picture 1:**

CNC900 /CHAN	.1 MANU				
MANUAL-DATA					
	Command	Actual	Override	2	
Feedrate	10000	6500	65		
Speed	2000	0	35		
Zero Point	54		M-Fct.	-	
Coord-Sys	-				
X 545.00	0 Y 682	2.000 Z	41.000 A -3	0.200	
B -9.75	7				
Channel Start Data Dialog Parameter					

Selection of

- F1 Channel
- F2 Start data
- F3 Dialogue
- F4 -
- F5 Parameter

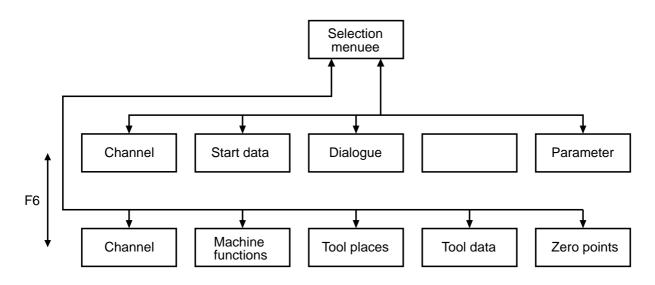
CNC 900 OPERATING

2.5 Selection menue (continued)

Selection picture 2:

Switching from selection picture 1 <--> selection picture 2 with function key F6 (roll function)

CNC900 /CHAN	.1 MANU		
MANUAL-DATA			
	Command	Actual	Override
Feedrate	10000	6500	65
Speed	2000	0	35
Zero Point	54		M-Fct
Coord-Sys	-		
X 545.00	90 Y 682	2.000 Z	41.000 A -30.200
B -9.75	57		
Channe l	Machine- Function	Tool- Places	Tool- Data Zero-Point


Selection of

- F1 Channel
- F2 Machine function
- F3 Tool places
- F4 Tool data
- F5 Zero points

2.5 Selection menue (continued)

Menue tree

Functions	Section
Start data	2.5.1
Dialogue	2.5.2
Parameter	2.5.3
Machine functions	2.5.4
Tool data	2.5.5
Zero points	2.5.6

2.5.1 Start data

The following menue enables setting the start data.

CNC900 /CH	AN.1	INU					
START-DAT	A						
Startprog	J.			Р:	87	N:	-
Approach	org	-		Ρ:	-	N:	-
Dripfeed		-	С:	\NC	DATA\		
			-		Simulation	:	
Rapid Fee	ed	20000			Grafik		-
%-Feed		-			Axis		-
Test Feed	ł	-			M-Function		-
X 0.	.000 Y	-45.	000	Z	-90.000	A	0.000
B -45.	.000 C	0.	000	D	0	B1	1020
Channe l							

- F1 Channel
- F2 -
- F3 -
- F4 -
- F5 -

Block

Input block number of the starting block. If the value is 0 or deleted, the NC program is started with the 1st block.

Rapid traverse

The desired rapid traverse can be input. If the value is 0 or deleted, the manual feed is active.

% Feed

The programmed feeds in the NC program are modified with the indicated percentage.

Test feed

If a test feed is input the programmed feeds in the NC program are ineffective. The test feed is active. If the value for the test feed is 0 or deleted, the test feed is not active.

NC900 /CHAN.1	AUTO	TF		STOP
START-DATA				
Startprog.		P :	87 N:	-
Approachprg	-	Ρ:	- N:	-
Dripfeed	-	C:\NCDATA	۱	
		Simu	lation:	
Rapid Feed	20000	Graf	ik	-
%-Feed	-	Axis	3	-
Test Feed	8000	M-Fu	Inction	-

Reapproach program

In the case of the abort of a current NC program (HAND abort, message) by the system the actual NC program position in the parameters P8802, P8803 and P8807 is stored. The NC program position is displayed in the start data menu. On properly terminated NC program resets this information.

CNC900 /CHAN.1	AUTO	A		STOP
START-DATA				
Startprog.		Ρ:	87 N:	-
Approachprg	1	Ρ:	1212 N:	530
Dripfeed	-	C:\NCDAT	Άλ	
		Sin	mulation:	
Rapid Feed	20000	Gra	afik	-
%-Feed	-	Ax	is	-
Test Feed	-	M-I	Function	-

After an NC abort if the restarting mode is switched on (P8804=1)und the NC program started, then the NC program up to the restarting point is simulated, i.e.. no axis movements result.

In the restarting block the simulation is switched off. The restarting position is started on direct path. With achieving the restarting position P8804=0 is settinged.

One re+starts on the initial position of the aborted block.

If the NC program in a process cycle is aborted, then becomes to cycle start started. When restarting m-functions and m-cycles are treated according to m-Funktionsdefinition (P11050..., P8250...).

Dripfeed mode

The NC programs that should be processed are not in the NC memory of the control but in external data carriers.

The operating panel CNC 900 C has the NC programs on the hard disk or on a data server.

With the operating panel **CNC 900**, the NC programs have to be read in via I/O (BWO-I/O-socket, NCARC.EXE).

NC programs for dripfeed have to be linear, i.e. block skips and sub-program call-ups are not allowed.

Activating in the start-data menue:

Dripfeed 1 Dripfeed on

Dripfeed 0 Dripfeed off

Dripfeed mode with operating panel CNC 900 C

 In the start-data menue: switch on dripfeed mode, input program number, check DOS-path-name, path-name is indicated in the start-data menue (see also CNC900X.CFG).

- Change of operating mode after AUTOMATIC.

Now the data transmission to the dripfeed-buffer is started.

- NC start.

Dripfeed mode with operating panel CNC 900

- In the start data menue: switch on dripfeed mode
- Check I/O parameters
- Connect external data carrier
- Change of operating mode after AUTOMATIC, due to this an I/O-input-start is made automatically. The CNC is now waiting on a data transfer.
- Start data transfer at the external data carrier,
- NC start

Dripfeed mode

with operating panel CNC 900 C

CNC900 /CHAN.1	AUTO				DF STOP
START-DATA					
Startprog.		Ρ:	87	Ν:	-
Approachprg	-	Ρ:	1212	Ν:	530
Dripfeed	1	C:\NC	DATA\		
			Simulation	:	
Rapid Feed	20000		Grafik		-
%-Feed	-		Axis		-
Test Feed	-		M-Function		-

	00 /CHAN.1 AUTO)		DF	START
Start Act.	Prog: Prog:	87 87	Bloc: Bloc:	F: F:	0.00 1000.00
	Dripfeed				
>	Dripfeed				
	Dripfeed				

Simulation

Graphic

The graphic simulation can be used for controlling optically the program run. Thereby e.g. the axes and the transmission of the M-functions can be switched off for a test run. The The graphic simulation is started in the start menue with '1' and switched off with '0' or 'deleted'.

With the key in you can switch from graphic to normal picture. If the graphic simulation is not switched on in the start menue, the message M4402: 'Graphic simulation not active' appears if you press the key .

Axes

If the simulation of the axes is activated (1), the axes do not move during program run. But the axes movements can be seen on the screen. 'ASIM' is written in the headline. The function can be switched off with '0' or 'deleted'.

M-functions

If the simulation of the M-functions is activated (1), the M-functions are not transmitted to the PLC. 'MSIM' is written in the headline. The function can be switched off with '0' or 'deleted'.

Simulation

Graphic on

NC900 /CHAN.1	AUTO			STOP
START-DATA				
Startprog.		P :	87 N:	-
Approachprg	-	Ρ:	87 N:	0
Dripfeed	-	C:\NCDAT	A\	
		Sim	nulation:	
Rapid Feed	20000	Gra	afik	1
%-Feed	-	Axi	is	-
Test Feed	-	M-F	function	-

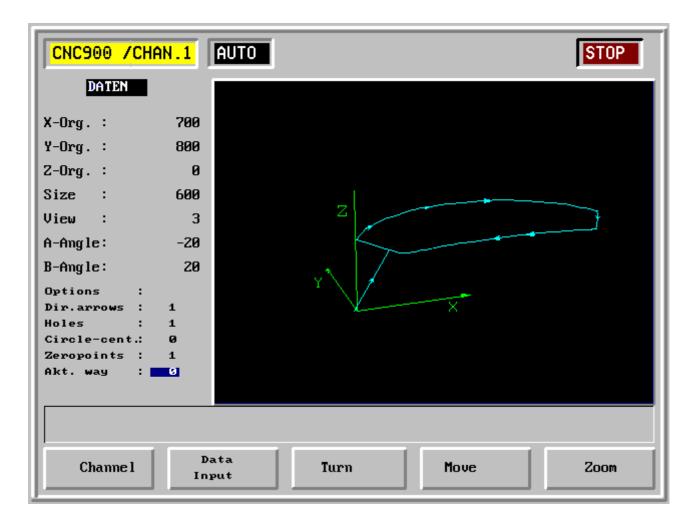
Axes and M-functions on

CNC900 /CHAN.1 AUTO		ASIM MSIM	STOP
START-DATA			
Startprog.	Ρ:	87 N:	-
Approachprg -	Ρ:	87 N:	0
Dripfeed -	C : \NCDA	TAN	
	Si	imulation:	
Rapid Feed 20000	Gr	rafik	-
%-Feed -	A	kis	1
Test Feed -	M-	-Function	1

Graphic simulation

Data inpu	t (F2)	Input with numerical keys				
X, Y and Z		X, Y, and Z origin				
Size		Zoom				
View	0 1 2 3	XY-coordinates (G17) XZ-coordinates (G18) YZ-coordinates (G19) 3D				
A-angle		turning around X-axis				
B-angle		turning around Z-axis				

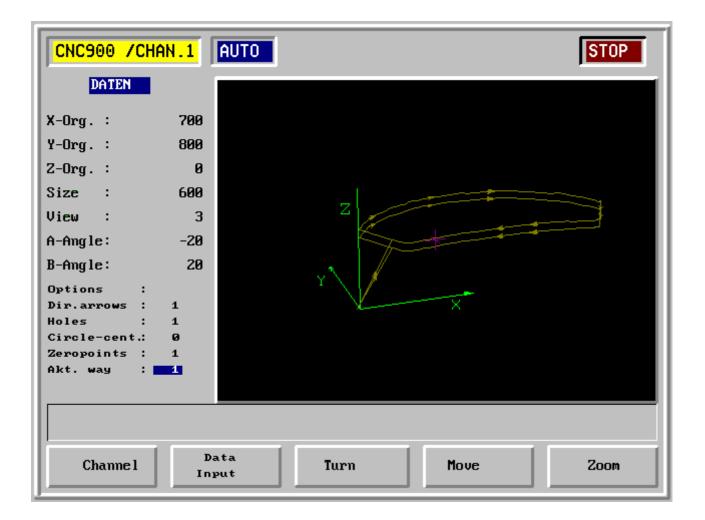
Options


Direcion arr	ows	1	on,	0 off
Holes	1 on,	0	off	
Circle centr	es	1	on,	0 off
Zero points		1	on,	0 off
Actual ways	6	1	on,	0 off

2.5.1 Graphic simulation

Graphic simulation

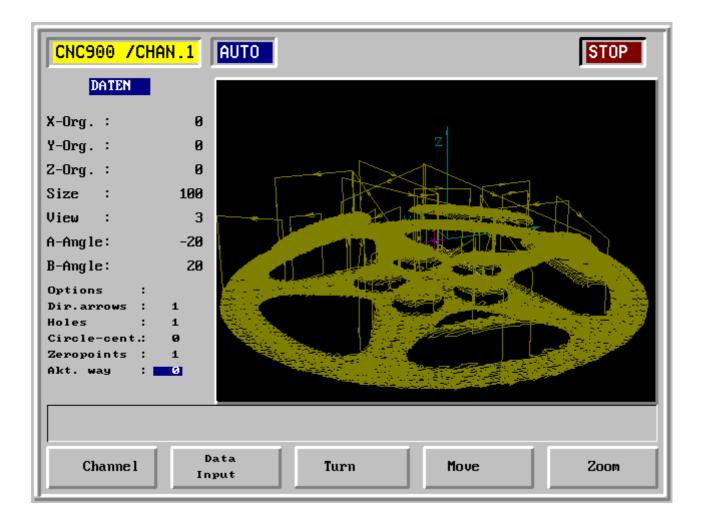
Display of the target way (turned around X and Z axis)



- F1 Channel
- F2 Data input Input with numerical keys
- F3 Turning Turning around the X-, Z-axis, input with cursor
- F4 Move X, Y and Z origin, input with cursor
- F5 Zoom Size, input with cursor

Graphic simulation

Display of the target and actual way (turned around X and Z axis)



- F1 Channel
- F2 Data input Input with numerical keys
- F3 Turning Turning around the X-, Z-axis, input with cursor
- F4 Move X, Y and Z origin, input with cursor
- F5 Zoom Size, input with cursor

Graphic simulation

Example of a complex workpiece

- F1 Channel
- F2 Data input Input with numerical keys
- F3 Turning Turning around the X-, Z-axis, input with cursor
- F4 Move X, Y and Z origin, input with cursor
- F5 Zoom Size, input with cursor

2.5.2 Dialogue

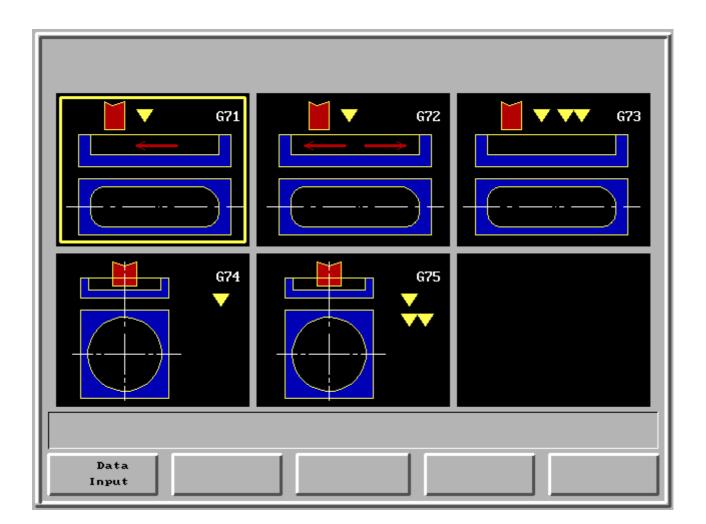
Here you get the possibility to switch on a customer-specific dialogue, e.g. **programming with work sheet**.

CNC	900 /	CHAN .	.1 MANU
Wo	ork s	heet	Program number: 1 Workpiece name: 1
1	1	671	Rectangular pocket roughing, conventional
2	1	G86	Ray type machining
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
0	0		
E	dit		New Data bloc(Sort)Data bloc DeleteNC-program generate

- F1 Edit
- F2 New data block
- F3 Sort
- F4 Delete data block
- F5 Generate NC program

2.5.2 Dialogue (continued)

Programming with work-sheet - Selecting the cycle mode


CNC900 /CHAN.1 MANU		
	Program numbers work piece name 1	1
MILLING CYCLES	671-675	
DRILLING CYCLES DRILLING PATTERNS		
POSITION ING ISO-PROGRAM	G100	
Select		

- F1 Selecting cycle mode
- F2 -
- F3 -
- F4 -
- F5 -

2.5.2 Dialogue (continued)

Programming with work sheet - Selecting the cycle

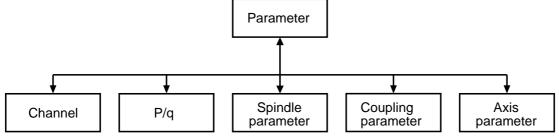
- F1 Data input
- F2 -
- F3 -
- F4 -
- F5 -

2.5.2 Dialogue (continued)

Programming with work sheet - Selecting the cycle

CNC900 /CHAN.1 MANU Pocket roughing conventional G71 Frool P17+P19 P17	P80:Zero pointGP81:Plane selectionGP82:ToolNoP83:Approach pos. 1.axismmP84:Approach pos. 2.axismmP85:Approach pos. tool-axismm/minP86:Spindle speedU/minP11:Pocket dimension 1.axismmP12:Pocket dimension 2.axismmP13:Pocket dimes. tool-axismmP14:Corner radiusmmP15:Contour allowencemmP16:In-feed dimen. 1./2.axismmP18:Pocket deep allowencemmP19:Safety margin tool-axismm	100.000 0 100.000 250.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Store		Don't Store

- F1 Store
- F2 -
- F3 -
- F4 -
- F5 Do not store



2.5.3 Parameter

The parameter menue consists of:

- Channel changeover
- Parameter changeover P/q (Channel / System parameter)
- Spindle parameter
- Coupling parameter
- Axis parameter

Menue tree

System parameter q

0 99	General system configuration
100 999	Definition channel descriptor#
1000 1999	System settings, system overlapping data
2000 9999	Axis data
10000	Channel parameter

Channel parameter P

0 6999	User block 1
0 499	Reserved for BWO standard cycles
0 299	Cycle-area for cycle interfaces
300 399	Area reserved for cycles, area for static, modal data
400 499	Area reserved for cycles, area for temporary data
500 6999	Area free for the user
7000 9999	Fix defined channel parameters
1100011999	System overlapping data, common area of all channels
1200018399	Axis data
2000029999 3000039999	User block 2 User block 3

2.5.3 Parameter

Channel parameter P:

Input addresses, displaying parameters, input values and store.

Γ	CN	IC900 /CHI	AN.1	MANU	Ĩ				
F	>	12200		1	Connected	l axis			\$20000705
P	, ⁻	12201:		Θ	Spindle	axis			\$20000505
P	>	12202:		-	Diameter	axis			\$20000504
P	>	12203:		-	-				\$20000504
P	>	12204:	3	80000	Max Axis	speed	Emm/	min]	\$20000505
P	>	12205:		2000	Slope spe	ed 1	Emm/	min]	\$20000505
P	>	12206:		-	Slope spe	ed 2	Emm/	min]	\$20000504
P	>	12207:		-	-				\$20000504
	X	Θ.	000	Y	-30.000	Z	319.000	A	-30.200
1	B	-9.	757						
		Channe l]	P ∕ q	Spin Param	dle- eter	Coupling- Parameter		Axis- Parameter

- F1 Channel
- F2 P/q Switching between channel (P) and system parameters (q)
- F3 Spindle parameter
- F4 Coupling parameter
- F5 Axis parameter

2.5.3 Parameter (continued)

System parameter q:

Input addresses, displaying parameters, input values and store.

CN	C900 /CHAN.1	MANU	Í				
q	8000	-	Connected	laxis			\$00000400
q	8001:	-	Spindle	axis			\$00000400
q	8002:	-	Diameter	axis			\$00000400
q	8003:	-	-				\$00000400
q	8004:	-	Max Axis	speed	Emm/	min]	\$00000400
q	8005:	-	Slope spe	ed 1	Emm/	min]	\$00000400
q	8006:	-	Slope spe	ed 2	Emm/	min]	\$00000400
q	8007:	-	-				\$00000400
X	0.000	Y	-30.000	Z	319.000	A	-30.200
В	-9.757						
	Channel P / q Spindle- Coupling- Axis- Parameter Parameter Parameter						

- F1 Channel
- F2 P/q Switching between channel (P) and system parameters (q)
- F3 Spindle parameter
- F4 Coupling parameter
- F5 Axis parameter

2.5.3 Spindle parameter

Inputing spindle data is possible in this menue.

CNC900 /CHAN.1	MANU		
SPINDLE 1			
Spindle On/Off	-	Numb.of revol.reached	0
Prg.numb.of revolu	tions 2000	Act.numb.of revolutions	0
Spindle-Def. (G96	,G97) 97	Spindle numb.of rev.	0
Spindle-Axe	Э	Reference-Axe (G96)	-
Max.numb.of revol.	(G97) 2000	Reference-Pos. (G96)	-
Max.numb.of revol.	(G96) -	Reference-Factor (G96)	-
	[
X 0.000	Y -30.000) Z 319.000 A	-30.200
B -9.757			
	`		
Channe 1		indle- ameter Coupling- Parameter	Axis- Parameter

F1 Channel

F2 P/q Switching between channel (P) and system parameters (q)

- F3 Spindle parameter
- F4 Coupling parameter
- F5 Axis parameter

2.5.3 Coupling parameter

Inputing coupling data is possible in this menue.

CNC900 /CHAN.1	MANU	Ĩ		
COUPLING 1				
Coupling On/Off Differential-Com	stant	-	Coupling activated Coupl.correc.P-share	- Es -
Teeth number Mas	ter-Axe	-	Coupl.correc.I-shar	es –
Teeth number Sla	ve-Axe	-	Coupling errors lim	it –
SynchronPosM	aster	-	Coupl.err.check time	е –
SynchronPosS	lave	-	Master-Axe	-
Coupling - type		-	Slave-Axe	-
X 0.000	Y	-30.000	Z 319.000 A	-30.200
B -9.757				
Channe l	P ∕ q	Spin Param		Axis- Parameter

- F1 Channel
- F2 P/q Switching between channel (P) and system parameters (q)
- F3 Spindle parameter
- F4 Coupling parameter
- F5 Axis parameter

2.5.3 Axis parameter

Inputing axis data is possible in this menue. Page 1

CNC900 /CHAN.1 MAI	VU					
AXE 1		Page	1(2)			
Axe connected	1	KV-Factor	16			
Circular Axe	0	Machine-Dynamic 1	250			
Max.Axe speed	30000	Machine-Dynamic 2	-			
Slope-speed	30000	Exact-stop limit fine	0.05			
Meas.sys.resol.Num.	300000	Exact-stop limit rough	-			
Meas.sys.resol.Denom.	1	Software limit pos.	-			
Counting Dir.reversal	0	Software limit neg.	-			
Output Dir.reversal	0	Groundposition absolut	545			
X 0.000 Y	-30.000	Z 319.000 A	-30.200			
B -9.757						
Channel P × q Spindle- Coupling- Axis- Parameter Parameter Parameter						

F1 Channel

F2 P/q Switching between channel (P) and system parameters (q)

- F3 Spindle parameter
- F4 Coupling parameter
- F5 Axis parameter

2.5.3 Axis parameter (continued)

Inputing axis data is possible in this menue. Page 2

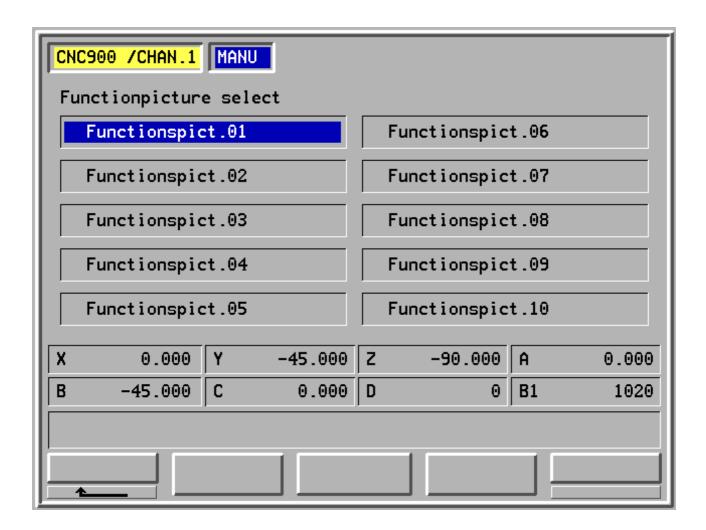
CNC900 /CHAN.1 MAN	U			
AXE 1			Page	2(2)
Reference-measure	1420	Driftcorrection		-
Reference-shift	-	Pre control cor.		-
R-cam->zeropu.max	-	Backlash correc.		-
R-cam->zeropu.akt	0.000	Meas.sys.cor.Time		-
Reference-Logic	\$01010001	Lead correc.Number		-
Measuring-Logic	\$00000000			
Error-Logic	\$00000000			
X 0.000 Y	-30.000	Z 319.000 A	-	30.200
B -9.757				
Channe l P / q	Spin Param	dle- eter Parameter		Axis- rameter

- F1 Channel
- F2 P/q Switching between channel (P) and system parameters (q)
- F3 Spindle parameter
- F4 Coupling parameter
- F5 Axis parameter

2.5.3 Axis parameter (continued)

Drive parameter

This menu permits the Input of the drive data.


CNC900 /CH	IAN . 1	MAN	1U]				
		5	в					
Number	S	0		104	KV Factor		:	16
Value			2		P-Fact. Speed-cont	r.	:	100
Minimum			-		I-fact. Speed-cont	r.	:	20
Maximum			-		Drive-Mode		:	\$02020203
					Drive-Definitions		:	\$00040002
Actval. 3	3 back	sig.	:	-	Actvalue 3 reque	est	:	-
Actval.	4 back	sig.	:	-	Actvalue 4 reque	est	:	-
Drive-State	e		:	\$00000000	Drive -Controllwor	٠d	:	\$00000000
Systemstate	e		:	-	Phasemode		:	-
X 0	.000	Y		-45.000	Z -90.000	A		0.000
B -45	.000	C		0.000	D 0	B1		1020
Channe l				Coup1 Parame		m.		Axis-Param. Page 1

- F1 Channel
- F2 -
- F3 Drive parameter
- F4 Axis parameter page 2
- F5 Axis parameter page 1

2.5.4 Machine functions

The actual function picture appears.

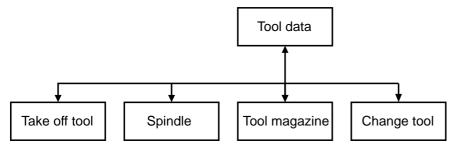
- F1 -
- F2 -
- F3 -
- F4 -
- F5 -

2.5.4 Machine functions (continued)

The actual function picture appears.

CNC900 /CHAN.1 MANU					
Functions	1 Text: Group A				
Forward V1	Func 1	Backward V1			
Func2-Off	Func 2	Func2-Off			
Func3-Off	Func 3	Func3-Off			
Func4-Off	Func 4	Func4-Off			
Func5 Off	Func 5	Func5-Off			
X 0.000	Y -45.000 Z -90.000	A 0.000			
B -45.000	C 0.000 D 0	B1 1020			
Perform Fct-Picture Perform Left Forw. Perform					

- F1 Performance left
- F2 Function picture forward
- F3 -
- F4 Function picture backward
- F5 Performance right


2.5.5 Tool data

The actual tool data can be input here.

The tool data menue consists of

- Lay down tool
- Spindle
- Magazine
- Tool change

Menue tree

The tool dates (length, radius...) can be called up with 10-digit tool numbers in the program run.

Inputs are possible in manual mode via the operating panel or external data carriers without indicating a block number. If 'delete store' is input, the tool data are deleted during power on test.

2.5.5 Spindle

Tool in the spindle.

CNC900 /CHAN.1 MANU		
	SPINDEL Data	
	Tool number :	1
	Tool plcace :	2
	Radius mm:	50
	Length mm:	70
	Radius corr. mm :	0.1
	Lenght corr. mm :	0.3
	S.max U∕min∶	3000
Channel Tool lay down	Spindle Magazin	Tool change

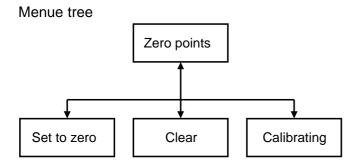
- F1 Channel
- F2 Lay down tool
- F3 Spindle
- F4 Magazine
- F5 Tool change

2.5.5 Magazine

Tool in the magazine.

CNC900 /CHAN.1 MANU		
	MAGAZIN Data SPI	NDEL WZ
	Tool number :	1
	Tool plcace :	0
	Radius mm:	1
	Length mm:	1
	Radius corr. mm :	-
	Lenght corr. mm :	-
	S.max U∕min∶	-
Channel Tool Lay down Spind	lle Magazin	Tool change

- F1 Channel
- F2 Lay down tool
- F3 Spindle
- F4 Magazine
- F5 Tool change



2.5.6 Zero points

The actual zero point data can be input here.

The zero point data menue consists of

- Set to zero
- Delete
- Calibrate

For each axis, a maximum of 6 zero points can be set with G54 to G59 and can be called up during program run.

Zero point shift is made ineffective with G53. The program then refers to the machine zero point.

Inputs are possible in manual mode via the operating panel or external data carriers without indicating a block number. When deleting the memory during power on test, the zero point data are alos deleted.

Zero point data can be loacated mathematically or they can be approached (edge scanner, clock gauge).

2.5.6 Zero points (continued)

The actual zero point is displayed. The values can be input and stored.

	NC900	/CHAN.1	MANU					
	ZERO-POINT: G 54 RANGE : 1							
		Istpos.	Vers	ch.				
	x	0.000	1 0	.000				
	Y	-30.000	-30	.000				
	Z	319.000	-41	.000				
	Ĥ	-30.200) 30	.200				
	В	-9.757	' 9	.757				
X		0.000	Y -30	0.000	Z	319.000	A	-30.200
B		-9.757						
	Channel Set Zero Delete Calibrate							

- F1 Channel
- F2 Set to zero
- F3 Delete
- F4 -
- F5 Calibrate

2.5.6 Zero points (continued)

The actual values can be set to zero.

C	NC900	/CHAN.1	NU					
	ZERO-POINT: G 54 RANGE : 1							
		Istpos.	Versch.					
	x	0.000	0.000					
	Y	0.000	-60.000					
	Z	0.000	278.000					
	Ĥ	0.000	0.000					
	в 0.000 0		0.000					
X	1	0.000 Y	0.000	Z	0.000	A	0.000	
B		0.000						
	Channel Set Zero Delete Calibrate							

- F1 Channel
- F2 Set to zero
- F3 Delete
- F4 -
- F5 Calibrate

2.6 Operating modes

The following operating modes can be set:

- MANUAL

- AUTOMATIC Sequential block Single block Positioning

2.6.1 Manual mode

Manual mode is switched on with key [1]

For traversing the axes, the axis name (X, Y, Z, ...) and travelling mode (continuously or step by step) and the feed rate have to be input first.

or negative direction.

The length of the actual tool is calculated when traversing the tool axis.

Travelling mode

During (continuously) travelling mode, the axis is moving as long until the manual key is pressed.

When traversing with fix length, the complete length is traversed by pressing a manual key once

(the step width can be selected by pressing the key +++ (step) again and again).

During this time, the keys for Manual+/-, axis name and travelling mode remain ineffective.

When pressing the key (Stop), the process can be interrupted. If a manual key is pressed

again, the axis moves from the new position on with the selected length.

Command = Actual

Desired positions can be approached in the program and they can be overtaken into the command

value display with key [+:+] (Command=Actual) and can be written into the memory with

(Input).

2.6.1 Manual mode (continued)

Traverse continuously in manual mode.

Switch on manual mode with key	(H)	. Select continuously with key	***
--------------------------------	-----	--------------------------------	-----

CNC900 /CHAN.1 MANU X Cont							
MANUAL-DATA							
	omnand	Actua	ι 🗌	Dvernide			
Feedrate	10000	50	00 6 3				
Speed	2000		D 50				
Zero Point	55		H-Fc	t. –			
Coord-Sys	-						
X D.DDD	Y –БЕ	D.DDD Z	278.000	A D.DDD			
B 0.000							
Channel St.	Channel Start Bata Dialog Parameter						

- F1 Channel
- F2 Start data
- F3 Dialogue
- F4 -
- F5 Parameter

2.6.1 Manual mode (continued)

Traverse step by step in manual mode.

Switch on manual mode with key 🕕. Select step-by-step with key 패.	
---	--

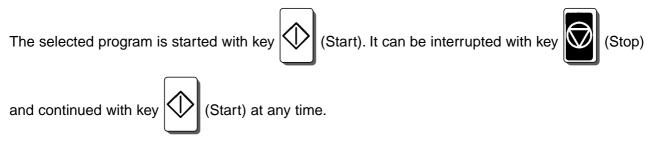
CNC900 /CHAN.I MANU X Step 0.01								
HANUAL-DATA								
	Command	Actual	Dverride					
Feedrate	1 DDDD	6000	69					
Speed	2000	Ð	50					
Zero Point	55		M-Fct					
Coord-Sys	-							
X 0.00	0 Y -68	0.000 Z 27	'B.000 A 0.000					
B 0.00	Ð							
Channe:1	Channel Start. Data Dialog Parameter							

- F1 Channel
- F2 Start data
- F3 Dialogue
- F4 -
- F5 Parameter

CNC 900 OPERATING

2.6.2 Automatic mode

Automatic mode is switched on with the keys:


□ Automatic sequential block

Automatic single block

Positioning

Start/Stop

<u>∎</u> →

The keys for machine functions are dependent of the PLC. The speed can be controlled with the override.

Skip block

When making a program, the blocks which do have a slash placed in front of them, are skiped in automatic mode if the key // (skip block) is switched on.

Switch on: Press key /

The key is only effective before program start. The display of the operating mode is completed by the symbol '/'.

Switch off: Press key / again.

2.6.2 Automatic mode (continued)

In automatic sequential block, all blocks of a program are worked one after the other.

Switch on sequential block with key

CNC900 /CHAN.1	AUTD				STOP		
Start Prog:	1000	Bik:	10	F :	1500.00		
Act. Prag:	1000	Blk:	10	F :	900.000		
	X+0000.00 41.00 MD3	Y-DD3	D.DD F6000 S	2000			
X D.DDD	Y -60	DDD	Z 278.0	90 A	D.DDD		
B D.DDD							
Channel Start Data Dialog Parameter							

- F1 Channel
- F2 Start data
- F3 Dialogue
- F4 -
- F5 Parameter

2.6.2 Automatic mode (continued)

In automatic single block, only one block is worked after the start. Start the next block with key

. Switch on automatic single block with key 🖳						
CNC900 /CHAN.1	AUTDE				STDP	
Start Prog: Act. Prog:	1000 1000	Blk: Blk:	10 10	F: F:	1500.00 900.00	
	X+DDDD.DD 41.DD MD3	Y-DD3D.	DD F6000 S28)DD		
X D.DDD	Y -60	.DDD Z	278.000	A	Ð.ÐÐÐ	
B 0.000						
Channel St.	ret. Tarta	Ծնունոց			Parsandaar	

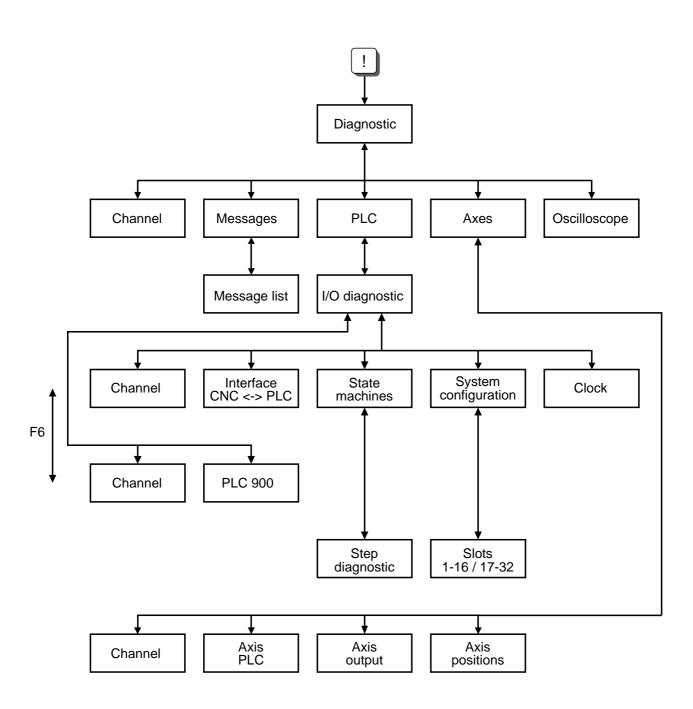
- F1 Channel
- F2 Start data
- F3 Dialogue
- F4 -
- F5 Parameter

CNC 900 OPERATING

2.6.2 Automatic mode (continued)

With positioning, a complete NC block or parts of it can be input via the numerical keys and worked without storing.

Switch on positioning with key $[\neg]$.


CNC900 /CHAN.1	AUTOP		STDP
Possatz : N10 X:300			> G II J S J J J J K I Q X A C I J + M - +
X 0.000	Y -60.000	Z 278.000	A 0.000
B 0.000			
Channe:1			

- F1 Channel
- F2 -
- F3 -
- F4 -
- F5 -

2.7 Diagnostic

Menue tree

2.7 Diagnostic

Diagnostic is switched on with the key [!]. The machine picture appears, e.g.

CNC900 /CHAN.1 MANU
Machine-Picture
X 0.000 Y -50.000 Z 278.000 A 0.000
B D.DDD
Channel Hessages PLC On is Oscillascop

- F1 Channel
- F2 Messages Display messages
- F3 PLC PLC diagnostic
- F4 Axes Axis drive diagnostic
- F5 Oscilloscope

2.7.1 Messages

Current messages

CNC900 /CHAN.1 MANU								
CURRENT MESSAGES	Page	. 1(3)						
M3001: Emergence - Stop								
M3002: Low lube level								
X -0.000 Y -	-60.000	Z 278.000	A 0.000					
B 0.000								
,,	,							
M3001: Emergence - Stop	M3001: Emergence - Stop							
Channe l Messages	Messag Record							

- F1 Channel
- F2 Messages
- F3 Message record Display of previous messages
- F4 Error information
- F5 -

2.7.1 Messages

Current messages

CNC900 /CHAN.1 MANU						
MESSAGES - HISTORY Page 1(9)	Day	Time				
M3000: Connection Operating panel <> CNC was break	28	11:18.26				
M3002: Low lube level	28	11:15.14				
M3001: Emergence - Stop	28	11:15.14				
M3002: Low lube level	28	11:15.09				
M3001: Emergence - Stop	28	11:15.09				
M3002: Low lube level	28	11:14.58				
M3002: Low lube level	28	11:14.55				
M3001: Emergence - Stop	28	11:14.55				
M3002: Low lube level	28	11:14.30				
M3001: Emergence - Stop	28	11:14.30				
M3002: Low lube level	28	11:14.21				
X -0.000 Y -60.000 Z 278.000 A		0.000				
B 0.000						
M3001: Emergence - Stop						
Channel Messages Message- Record						

- F1 Channel
- F2 Messages
- F3 Message record Display of previous messages
- F4 -
- F5 -

2.7.2 PLC

I/O diagnostic

CNC900 /CHA	CNC900 /CHAN.1 MANU																			
I/O DIAGNOSIS																				
Inputs	E1 _	1	1	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	
Outputs	A1 .	1 .	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Markers	M	1 .	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Register	R	0_	0				10	920	949	518	38									
X -0.0	000	Y	-60	.00)0	Z	<u>.</u>		:	27	8.0	00	F	۹ ۲				0.	00	0
Β 0.000																				
Channel Interface CNC<>PLC State- machine System- Config. Clock																				

- F1 Channel
- F2 PLC900
- F3 Interface CNC <--> PLC
- F4 -

F5 -

I/O diagnostic

CNC900 /CHAN.1 MANU																				
I/O DIAGNOSIS																				
Inputs	E1 _	1	1	1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	
Outputs	A1 .	1 .	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Markers	M	1 .	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Register	R	Θ.	Θ				10	920	949	518	38									
 X −0.0	00	Y	-60	.00	00	Z	2		;	27	8.0	00		<u>م</u>				0.	00	0
B 0.000																				
Channel PLC900																				

F1 Channel

F2 -

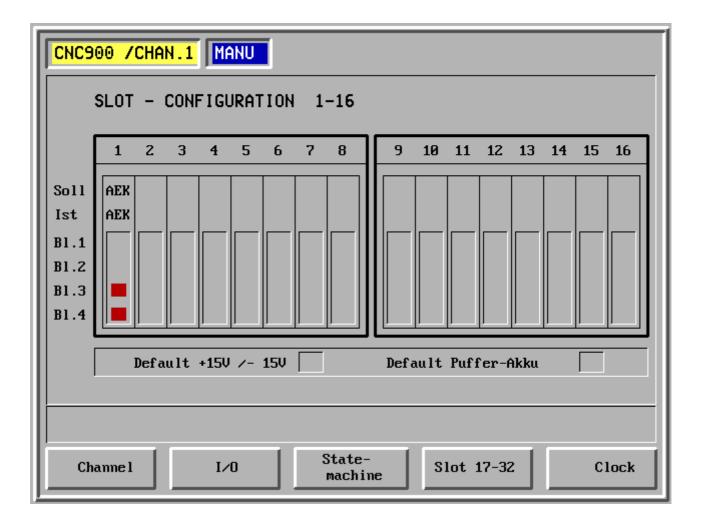
- F3 State machine
- F4 Sytem configuration
- F5 Clock

State machine diagnostic

CNC900 /	CHAN.1 MANU
	SK1 STATEMACHINE 1
	SK2 STATEMACHINE 2 EXAMPLE
	SK3
	SK4
	SK5 1.AXIS AUTOM.REFERENCING
	SK6 2.AXIS AUTOM.REFERENCING
	SK7 3.AXIS AUTOM.REFERENCING
	SK8 4.AXIS AUTOM.REFERENCING
	SK9 5.AXIS AUTOM.REFERENCING
	SK10 6.AXIS AUTOM.REFERENCING
Channe 1	Step- Diagnostic

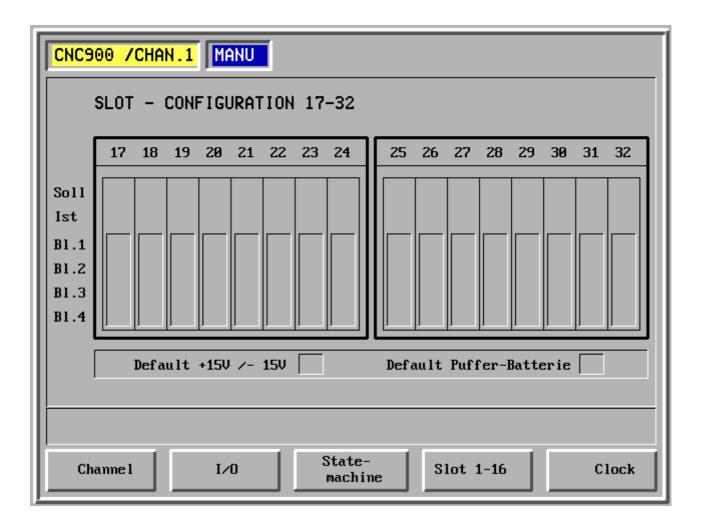
- F1 Channel
- F2 State machine diagnostic
- F3 -
- F4 -
- F5 -

State machine diagnostic


CNC900 /CHAN.1 MANU
Statemachine: 1
Missing condition in step: 0
'HIGH' - Level necessary 'LOW' - Level necessary
Channel Statemachine

- F1 Channel
- F2 State machine
- F3 Page forwards
- F4 Page back

F5 -


System configuration

- F1 Channel
- F2 -
- F3 State machine
- F4 System configuration, slots 17-32
- F5 Clock

System configuration

- F1 Channel
- F2 -
- F3 State machine
- F4 System configuration, slots 1-16
- F5 Clock

Clock

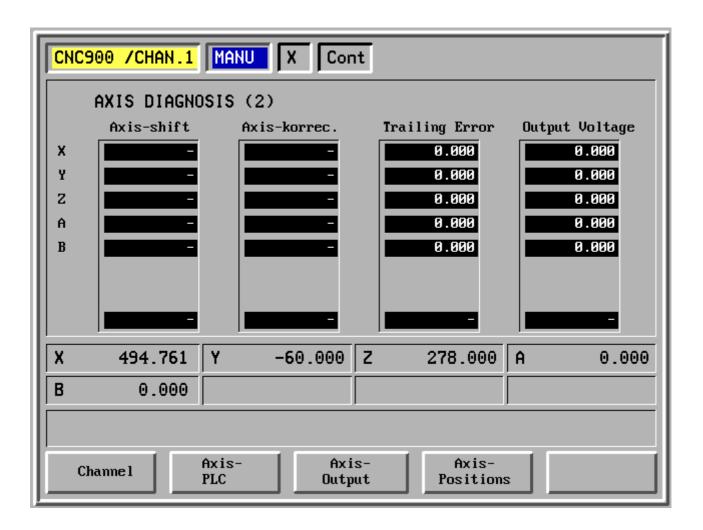
CNC900 /	CHAN.1 MANU
	Date: 16. 1. 97
	Time: 11: 33: 45
X -	-0.000 Y -60.000 Z 278.000 A 0.000 0.000 I I I I I I I I I I I I I I I I I
Channe	l Config. State- machine I/O Clock

- F1 Channel
- F2 I/O
- F3 State machine
- F4 System configuration
- F5 Clock

2.7.3 Axes

Axis diagnostic 1

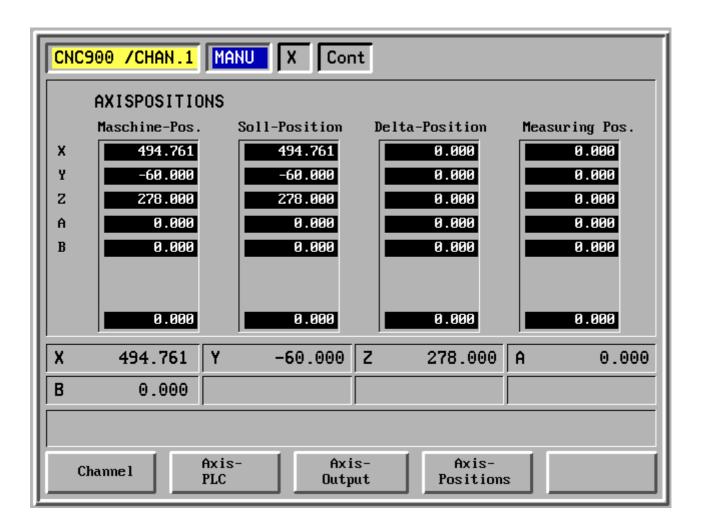
	IC900 /CHAN.1 MANU X	Cont
	AXIS DIAGNOSIS (1)	
	Channel-Amplif.Enable 💼 Channel-Drive Enable 💼	Channel-Security-Stop 💼 Channel-Block-Enable 💼
		X Y Z A B
	Axis is moving	
	Drive Command plus	
	Drive Command minus	
	Drive Limit plus	
	Drive Limit minus	
	End Position plus	
	End Position minus	
X	409.909 Y -60.00	000 Z 278.000 A 0.000
В	0.000	
	Channel Axis- PLC C	Axis- Output Positions


- F1 Channel
- F2 Axis PLC
- F3 Axis output
- F4 Axis positions

F5 -

2.7.3 Axes (continued)

Axis diagnostic 2


- F1 Channel
- F2 Axis PLC
- F3 Axis output
- F4 Axis positions

F5 -

2.7.3 Axes (continued)

Axis positions

- F1 Channel
- F2 Axis PLC
- F3 Axis output
- F4 Axis positions

F5 -

2.7.4 Oscilloscope

Four-channel oscilloscope with time-, polar- and Fourier diagnostic for evaluating the mechanical settings and for recognising defective mechanical parts.

CNC900 /CHAN.I MANU X Cont
Line 1 9nL : D((ret: Ampli(: Line 2
Pol : D(Cret: Aer]](: Line D
GnL : Offret: Amplif:
Line 9 9nL : Dífret: AmrJií:
Joinneo St: Cane : Velue : J.Lere :
Channel Time Diag Perfore Diag

- F1 Channel
- F2 Start time diagnostic
- F3 Start polar diagnostic
- F4 Start Fourier diagnostic

F5 -

CNC 900 OPERATING


2.7.4 Oscilloscope (continued)

Qnr	Parameter number (connection)	
Number	Meaning	
q2150	Command position	[mm, degree]
q2152	Actual position	[mm, degree]
q2160	Lag distance	[mm, degree]
q2161	Coupling correction	[mm, degree]
q2168	Actual difference (corresponds to speed)	[mm, degree]
q2169	Output voltage of positioning control	[V]
Offset Amplif	Vertical offset Amplification, vertical resolution, units per division	
Trigger St	Trigger line number	
Edge	 trigger at rising edge trigger at declining edge trigger immediately 	
Value	Value at which it is triggered.	
TB/Freq	Time basis / frequency, horizontal resolution, units per division	[ms, Hz]

2.7.4 Oscilloscope (continued)

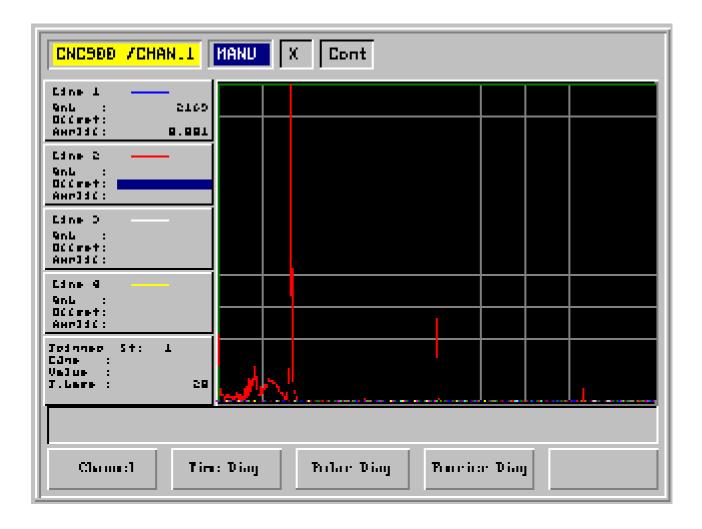
Example: Three-channel time diagnostic

Line 1	Qnr	2169	output voltage of positioning control in V
	Offset	0,7	vertical offset
	Amplif.	0,15	units per division
Line 2	Qnr Amplif.	0,13	actual difference in mm/degree units per division
Line 3	Qnr	2160	lag distance in mm/degree
	Amplif.	0,2	units per division
Trigger Edge Value Time basi	Line number s / Frequency	3 1 0,1 40	trigger at rising edge trigger at this value units per division

2.7.4 Oscilloscope (continued)

Example: polar diagnostic, circle test

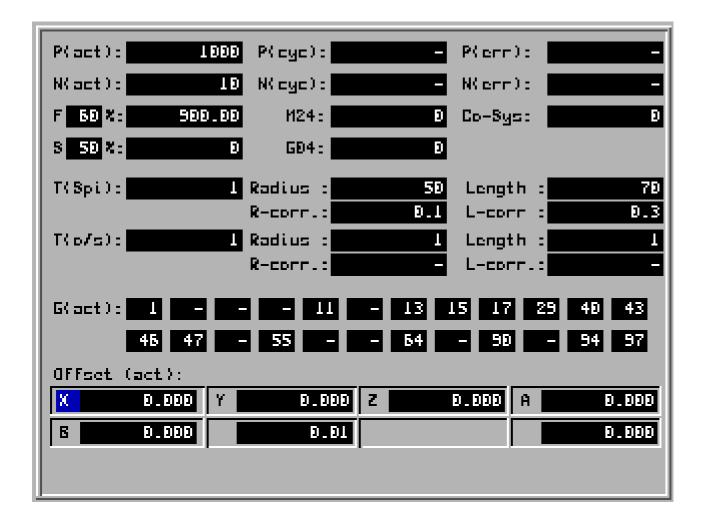
CNC900 /CHAN.1	MANU X Cont
Line 1 Qnb : 2152 Offset: - Amplif: 0.02	Radius =0.4647 min. Radius =0.4586 Max. Radius =0.4705
Line 2 Qnb : 2352 Offset: - Amplif: -	A Company of the comp
Line 3 Qnb : - Offset: - Amplif: -	$\left(\left(\left(\bigcirc\right)\right)\right)$
Line 4 Qnb : - Offset: - Amplif: -	
Trigger St: - Edge : - Value : - T.base : 120	
Channel Time	e Diag Polar Diag Fourier Diag


Line 1	Qnr Amplification	2152 actual position 1st axis in mm/degree 0,02 units per division
Line 2	Qnr	2352 actual position 2nd axis in mm/degree
Time basis	s / Frequency	120 units per division chose time/frequency basis so that at least one full circle is run.

2.7.4 Oscilloscope (continued)

Example: Fourier diagnostic, frequency spectrum

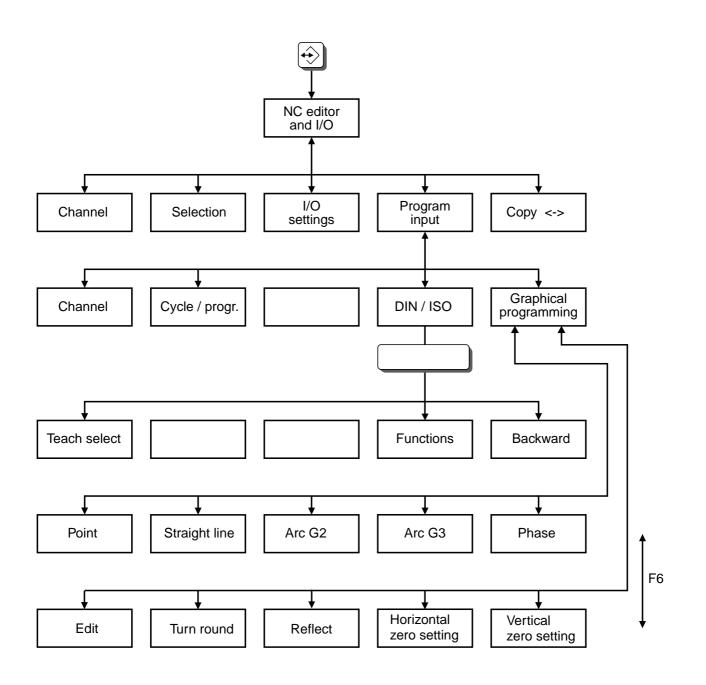
Frequency spectrum with oscillations at 33Hz and harmonics at 99Hz and 165HZ



Line 1	Qnr Amplification	2169 0,01	output voltage of positioning control in V units per division vertically
Trigger	Line number	1	
Time basis	s / frequency	20	units per division horizontally in Hz

2.7.5 Additional informations

Additional online informations can be called up during operating with the key [?].


Note: With negative program numbers it concerns a cycle.

2.8 NC editor and I/O

Writing, changing and storing NC programs; Storing parameter, tool data and zero points.

Menue tree

2.8 NC editor and I/O (continued)

When pressing the key the menue for NC programming and I/O appears.

CNC900 /CI	HAN.1	MAN	U							
CNC:					C:N	ICDATA	I			
PARAMETER WERKZEUGDA1	TEN - TO	OLDA	TA			0000 0001			15:18 18:51	
NULLPUNKTE		ROPO				0010			10:17	
P1	28-10	-84	6:25	477	P10	0011	22-0	4-96	10:51	387
P0001	28-10		6:25	13	P10	-			17:26	
P1000	25-10			2658	P11				10:49	
P4711	28-10			12977	P11				17:23	
P7000	23-10			1751	P12				17:23	
P300124	28-10		6:25	8468	P12				14:11	
P310104	28-10	-84	6:25	4730		2345			13:13	
P310111	28-10	-84	6:25	86		24523			12:18	
P310112	28-10	-84	6:25	7131	P15	50000	30-0	7-96	10:58	275
Free M	lemory	:	1	448704	Max	Memor	ry :	1542	656	
X 0	000	Y		0.000	Ζ		0.000	A		0.000
B 0	000									
Channel Select Modification Program Input Copy <->										

- F1 Channel
- F2 Selection
- F3 I/O settings
- F4 Program input
- F5 Copy <->

2.8.1 Selection

Selection of storing modes

on the left side	on the right side
CNC:	CNC:
C:\NCDATA	C:\NCDATA
	A:\
	Serial I/O

2.8.2 I/O parameters

This menue can be used for inputing I/O parameters.

CNC900 /CHAN.1	MANU					
E/A	-PARAMETER					
Baudrate	9600		COM 14	/ 0=HD		1
Data Bits	8		EOF mark			4
Stopbits	2					
Parity	0					
Program Overw	0					
X-on/X-off Pr	0		Teach Ax	Select	\$	00000007
X 0.000 B 0.000	Y 0.	000	Z	0.000	Â	0.000
Channe l						

F1 Channel

F2-

F3-

F4-

F5-

2.8.3 **Program input**

Program selection appears with pressing key F4 (in screen frame). With the cursor keys an existing program can be chosen or the number of a new program can be input with the numerical keyboard.

CNC900 /CHAN.1 MANU							
CNC:	C:NCDATA						
Selected Program : P 1000	P10000028-11-9515:18475P1000017-12-9418:5149P10001019-09-9610:171824P10001122-04-9610:51387P10114-06-9617:261162P11113-06-9610:4976P11214-06-9617:2347P12114-06-9617:231710P12213-06-9614:112427P1234525-06-9613:13398P1245232-07-9612:1817P15000030-07-9610:58275						
Free Memory : 1448704	Мах Мемоту : 1542656						
X 0.000 Y 0.000	Z 0.000 A 0.000						
B 0.000							
Channel Zycle/Progr DIN/ISO Contur-Line							

- F1 Channel
- F2 Cycle /program
- F3 -
- F4 Input a program according to DIN / ISO
- F5 Input a program with outline

CNC 900 OPERATING

2.8.3 Program input (continued)

Program input	paragraph
according to DIN / ISO	2.9
also Teach in	2.10
with graphic support (outline path)	2.11

2.8.4 Copying

Parameters, tool data, zero points and NC programs can be selected with the cursor keys for copying. The selected data are activated with the key share and marked with an *.

CMC:	IAN.1 HANU		C:NICDATA		
unu:			C:MCDHIH		
+U'AKATETER			Г.ТААААА	20-11-95	15:10 475
UXXXXXXXXX	en - Tuuldata		Г.ТАВААТ	7-12-94	10:51 49
NULLIUNKIE	- ZERUFUINTR	s –	Г.ТАВАТА	10-80-06	18:17 1029
J'1	20-18-04 6-2	CS 477	LTAAATT	22-84-96	18:51 307
199901	20-18-04 6:2	25 10	L.T.R.T	19-86-36	17:26 1162
1777	20-11-96-11%		l [111	13-80-30	18:49 76
P1666	25-18-36 16:4		P112	19-86-96	17:23 47
P4711	2 0-18- 36 15-0		P121	19-86-96	
174666	20-18-96 16 *.		P122	13-80-30	19:11 2927
1'069124	20-18-04 6-2		012345	25-86-96	
1/01/01/04	20-18-04 6:2		0124523		12:10/17
1710111	20-18-04 6:2	es 06	6128888	38-87-36	18:50 275
Говь На	HDD4 :	Taabaad	Nex Nendo	ı : 1542	2050
X Đ	.DDD Y	D.DDD	Z	D.DDD A	0.00D
6 0	.000				
Charamet	School.	Head of the	at.irm	Pernyeson Tegnet.	նդոյ 🔿 🔰

- F1 Channel
- F2 Selection
- F3 I/O settings
- F4 Program input
- F5 Copy <->

Parameter

After selecting with the cursor keys and after activating with sparameters can be copied with F5 from CNC: to C:\NCDATA or A:\ . Input Pmin and Pmax, identification letter D.

CNC900 /CHAN.1 MANU	
CNC:	CINNCDATA
Gogg Pile : PoRoHETER Prin : 188 Channel 1 Prin : 588 Ply.Hosk: \$88888888 In : D 189	C188888 20-11-95 15:10 475 C188881 7-12-94 10:51 49 C188818 19-89-95 18:17 1024 C188818 19-89-95 18:17 1024 C188818 19-89-95 18:51 307 C181 14-85-95 17:25 1152 C111 13-85-95 18:49 75 C112 14-85-95 17:23 47 C121 14-85-95 17:23 1718 C122 13-85-95 14:11 2427 C12345 25-85-95 13:13 390 C124523 2-87-95 12:10 17 C158888 38-87-95 18:50 275
Сове Менсоч : 1990990	Мах Манари : 1592656
X D.DDD Y D.DDD	Z D.DDD A D.DDD
B 0.000	
Channel	

- F1 Channel
- F2 -
- F3 -
- F4 -
- F5 Copy <->

Parameter

Meaning of the input fields

- Pmin: first parameter of output
- Pmax: last parameter of output
- Channel 0 Output of q-parameters
 - 1 to 8 Output of P-parameters of the corresponding channel
- Flag mask Status flag mask
 - Output of all parameters according to Pmin Pmax
 Output of parameters in the range of Pmin Pmax, at which the bits are set in the parameter status according to the flag mask. Herewith an output of all parameters in which the EEPROM bit is set, is possible.
- to: DOS file name

Tool data

After selecting with the cursor keys and after activating with	\$ tool	data	can l	be c	opiec	l with	F5
from CNC: to C:\NCDATA or A:\ . Identification letter W.	-						

CNC900 /CHAN.1 MANU	
CNC:	CONCORTA
Copy File : LEBERE KOOTEN TOOLDOTO Channel 1 to :	C188888 20-11-95 15:10 975 C188888 7-12-94 10:51 49 C188881 7-12-94 10:51 49 C188818 19-89-95 18:17 1024 C188811 22-84-95 18:51 307 C188811 22-84-95 18:51 307 C181 14-85-95 17:25 1152 C111 13-85-95 18:49 75 C112 14-85-95 17:23 47 C121 14-85-95 17:23 1718 C122 13-85-95 14:11 2427 C12345 25-85-95 13:13 390
U 135	0124523 2-87-96 12:10 17 0158888 38-87-96 18:50 275
Сове Менсон : 1990990	Мах Менори : 1592656
X D.DDD Y D.DDD	Z D.DDD A D.DDD
B 0.000	
Chernerel	

F1 Channel

F2 -

F3 -

F4 -

F5 Copy <->

Zero points

After selecting with the cursor keys and after activating with size zero points can be copied with F5 from CNC: to C:\NCDATA or A:\ . Identification letter N.

CNC900 /CHAN.1 MANU					
CNC:	CINACIATA				
Gigg Pile : NULHINKTE ZEROPOINT	C188888 20-11-95 15:10 475 C188881 7-12-94 10:51 49 C188881 19-89-95 18:17 1024 C188811 22-84-95 18:51 307 C188811 14-85-95 17:25 1152				
Charanne 21 1 Ion 1	0111 13-86-96 18:49 Y6 0112 14-86-96 17:23 47 0121 14-86-96 17:23 1718 0122 13-86-96 14:11 2427				
N 125	012345 25-86-96 13:13 390 0124523 2-87-96 12:10 17 0158888 38-87-96 18:50 275				
Сове Менсоч : 1990990	Мах Манорч : 1592656				
X D.DDD Y D.DDD	Z D.DDD A D.DDD				
B 0.000					
Channe:1					

- F1 Channel
- F2 -
- F3 -
- F4 -
- F5 Copy <->

NC programs

After selecting with the cursor keys and after activating with	\$, the selected NC program is
marked with *.	-

CNC900 /CHAN.1 MANU					
CNC:	CINNCDATA				
JARAFIETER UERKZEUGDATEN - TUULDATA MULLIUNKTE - ZERUFUINTS J*1 20-18-04 6:25 477 J9881 20-18-04 6:25 10 J*7 20-18-04 6:25 10 J*7 20-18-04 6:25 10 J*7 20-18-04 6:25 10 J*74 20-18-06 16:48 2050 J*888 25-18-06 15:02 12.577 J*888 20-18-06 15:02 12.577 J*888 20-18-06 16:56 1751 #J088124 20-18-04 6:25 0460 J*018184 20-18-04 6:25 0460	C188888 20-11-95 15:10 975 C188881 7-12-94 10:51 49 C188881 19-89-95 18:17 1024 C188881 19-89-95 18:17 1024 C188881 22-89-95 18:51 307 C188811 22-89-95 18:51 307 C181 14-86-95 17:25 1152 C111 13-85-95 18:49 75 C112 14-85-95 17:23 47 C121 14-85-95 17:23 1718 C122 13-85-95 19:11 2427 C12345 25-85-95 13:13 390 C124523 2-87-95 12:10 17 C158888 38-87-95 18:50 275				
Сове Менсоч : 1990990	Мах Мансоч : 1592656				
X D.DDD Y D.DDD	Z D.DDD A D.DDD				
B D.DDD					
Channel Scheet. Holification Proport Opp ()					

- F1 Channel
- F2 Selection
- F3 I/O settings
- F4 Program input
- F5 Copy <->

NC programs

After selecting with the cursor keys and after activating with (s) tool daNC programs can be copied with F5 from CNC: to C:\NCDATA or A:\ . Identification letter P.

CNC900 /CHAN.1 MANU				
CNC:	CINACIATA			
JARAMETER VERKINGDATEN - TUULDATA NULLIUNKTE - ZERUFUINTS P1 20-18-04 6:25 477 J9881 20-18-04 6:25 10 J77 20-18-04 6:25 10 J77 20-18-04 6:25 10 J77 20-11-06 11:87 125 P1888 25-18-06 16:49 2000 J9711 20-18-06 15:02 12377 J7888 20-18-06 15:02 1257 J788124 20-18-04 6:25 0460 J708124 20-18-04 6:25 4738 J708184 20-18-04 6:25 4738	CORRING 29-86-95 12:00 2647 HOBBING 29-86-95 12:07 3657 CORRECT 20-87-94 5:12 257 CORRECT 20-87-94 5:13 257 CORRECT 20-87-94 5:13 257 CORRECT 20-87-94 5:15 257 CORRECT 2-82-95 18:41 259 CORRECT 20-86-95 13:38 2641 CORRECT 25-80-95 15:12 3955			
Cose Nendon : 199099D	Мах Манори : 1592656			
X 0.000 Y 0.000	Z D.DDD A D.DDD			
B D.DDD				
Channel Scheet Halification Proportion Opp ()				

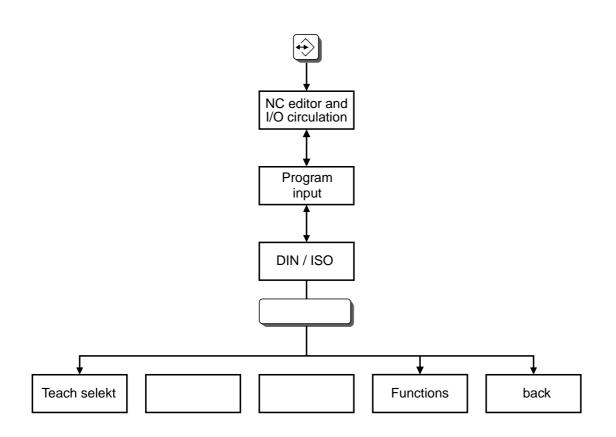
- F1 Channel
- F2 Selection
- F3 I/O settings
- F4 Program input
- F5 Copy <->

NC programs

All programs mark

F6 and inserting branch press.

All programs off NC memory copy


(store total NC memory in a file)

Programs mark and Funktionstate F5 (copy) press.

2.9 Input a program according to DIN / ISO

Menue tree

After inputing the program number and after pressing the key DIN / ISO the program appears with the first blocks in the display, if a program is existing with the indicated number. If not, only the program number and >N10 appears.

CNC90	CNC900 /CHAN.1 MANU						
Progr	ramm : P10	00					
>N10	G00 G54 X	+000(0.00 Y -0030	.00 F6000	S2000		
/N20	G00 Z-41	.00 N	103				
N30	G01 X+000	0.00	Y+0000.00				
N40	G01 X-001	7.48	Y+0000.92				
N50	G02 X-003	4.17	Y+0011.65	I-0016.43	3 J+0020	9.89	
N60	G01 X-004	1.33	Y+0025.40				
N70	G02 X-003	8.16	Y+0031.23	I-0037.78) J+0027	7.25	
N80	G03 X+000	4.74	Y+0049.44	I-0045.49) J+0108	3.37	
X	0.000	Y	0.000	Z	0.000	Â	0.000
В	0.000						

- F1 -
- F2 Renumber
- F3 -
- f4 -
- F5 -

Changing or inputing blocks

When pressing the selected block and the function appear.

CNC900 /CHAN.1 MANU				
Programm : P1000 N10 G00 G54 X+0000.00	Y- <mark>0</mark> 030.00	F6000	> G M F S P : R T I J K () q x a c / { I } + N = *	
X 0.000 Y (0.000 Z	0.000	A 0	.000
B 0.000				
Teach-All		Funktioner	n Zuruec	k

- F1 Teach-Select
- F2 -
- F3 -
- F4 Functions Switching on further programming functions
- F5 Back

Functions

When pressing 3 the functions are activated. Selection with cursor keys.

CNC900 /CHAN.1 MANU		
Programm : P1000 N10 G00 G54 X+0000.00 Y-0030	0.00 F6000	<pre>> < sqrt > int <= intr >= abs <> ln N log sc: exp sin asin cos acos tan atan or del and \$ not ;_!</pre>
X 0.000 Y 0.000	Z 0.000	A 0.000
B 0.000		
Teach-All	Funktioner	n Zurueck

- F1 Teach-Select
- F2 -
- F3 -
- F4 Functions Switching on further programming functions
- F5 Back

Functions

When pressing XXX another function siede appears.

	O /CHAN.1	MANU					
-	amm : P10 G00 G54) Y- 003	0.00 F6	000	> A B C D E F G H I J K L M	N O P Q R S T U V W X Y Z
X	0.000	Y	0.000	Z	0.000	A	0.000
В	0.000						
Teach-A	11				Funktioner	n	Zurueck

- F1 Teach-Select
- F2 -
- F3 -
- F4 Functions Switching on further programming functions
- F5 Back

2.10 Preparing a NC program in Teach mode

2.10.1 Setting zero points

The parameter P11804 (tool carrier - length) must be loaded with the right values and the tool dimension must be active.

Drive axes in the desired zero point position.

Call up function "**Command=Actual**" and store with '**Enter**'. Herewith the current actual values of the axes are transmitted to the zero point memory.

In this way different zero pointes can be set.

If these zero point shifts should be active in manual operation mode, the parameter P8758 has to be loaded with the desired value (G54 to G59).

In automatic mode, the call up is made with the functions G54...G59.

Remark:

The zero point shifts are only effective in the tool coordinate system (G48) or in the workpiece coordinate system (G49).

2.10.2 Enter a program with "Teaching"

It is advisable, to mark the workpiece with all known or determining "Teach-points". This facilitates later a fast discovering of the individual NC blocks, to insert in the program certain data and/or functions.

A further help would be, if the stored "Teach-points" would be written in a list with the corresponding block number, e.g. Point 5 = block no. 80.

The stored zero point shift, on which the NC program refers, can be activated with parameter P382.

Select mode of operation "Positioning". Approach zero point position with a positioning block, e..g. N10 G0 G55 X0 Y0 Z0 A0 B15

The mode of coordinate, in which the command / actual data were stored (P8751), must be inserted in the block over the corresponding G - function (G48, G49).

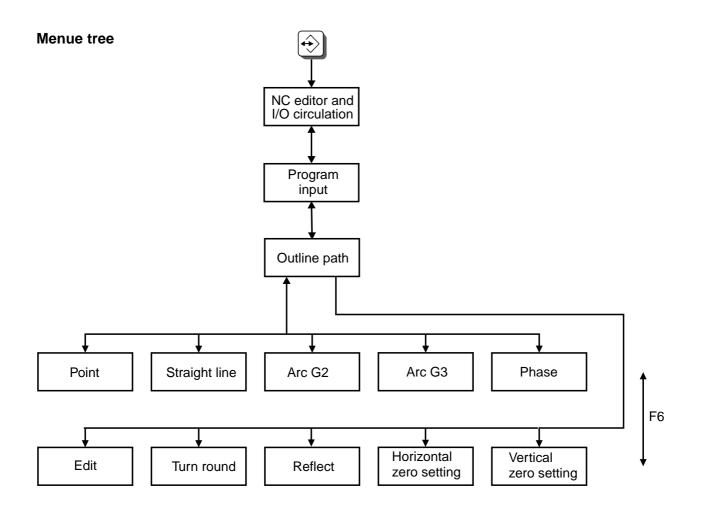
Select manual operation mode:

Enter and store program number and the corresponding functions and technological data in the designated NC blocks,

e.g. N10 T1 M16 N20 G55 G49 FOR... S.... X....... Y...... Z......

With "continuous drive" or "step drive" the desired position is approached with all axes. If all axes are in their anticipated position, the position is stored with the function 'Command=Actual' and 'Enter and transmitted to the indicated block. e.g. N30 X Y..... Z..... A..... C.....

The next Teach - points are started and stored likewise.


Subsequently the program is optimizeed by inserting feedrate, number of revolutions etc.

After reviewing the program and after a test run, the program is finished.

2.11 **Program input with graphic support (outline path)**

2.11.1 General

With pushing from key the menu for NC programming seems.

CNC900 /CHAN.1 MANU	
CNC:	C:NCDATA
PARAMETER WERKZEUGDATEN – TOOLDATA NULLPUNKTE – ZEROPOINTS P87 5–10–44 31:00 17	0 8-10-96 14:24 1168 1 30-01-97 15:41 869 1.1 23-09-98 9:24 2048 1.SAV 12-08-96 10:05 6400 10 11-03-97 13:52 184 10.1 11-03-97 14:02 512 100 21-08-96 16:07 215 1011 22-08-96 11:52 277 1020 22-08-96 11:52 188 1030 22-08-96 18:10 269 1032 22-08-96 11:52 283 1033 22-08-96 11:52 259
Free NC-Memory : 1542400	Max NC-Memory 1542656
X 0.000 Y -45.000	Z -90.000 A 0.000
B -45.000 C 0.000	D 0 B1 1020
Channel Select Modifi	cation Program Copy <->

- F1 Channel
- F2 Selection
- F3 Adjustments
- F4 Program input
- F5 Copy <->

Program input

With pushing of key F4 (within the display frame) seems the program selection. The paragraph of a new program can be input with the numerical keyboard.

CNC900 /CHAN.1	MANU				
CNC:		C:NCDATA			
Selected Prog P 87	ram :	0 1 1.1 1.SAV 10 10.1 100 1011 1020 1030 1032 1033	30-01 23-09 12-08 11-03 11-03 21-08 22-08 22-08 22-08 22-08 22-08	-97 15 -98 9 -96 10 -97 13 -97 14 -96 16 -96 11 -96 11 -96 18 -96 11	1:24 1168 1:41 869 1:24 2048 1:05 6400 1:52 184 1:02 512 1:07 215 1:52 277 1:52 188 1:10 269 1:52 283 1:52 259
Free NC-Memor	y: 1542400	Max NC-Memor	'y 1	1542656	5
X 0.000	Y -45.000	Z –90	.000	A	0.000
B -45.000	C 0.000	D	0	B1	1020
Channe 1 Zyc	:le/Progr	DI	N⁄ISO		Contur-Line

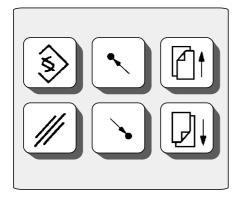
- F1 Channel
- F2 Cycle/program
- F3 -
- F4 Program input according to DIN / ISO
- F5 Program input with outline path

With the cursor keys an existing program can be chosen or the number of a new program can be input with the numerical keyboard. After pressing the key F5, the picture with the coordinates appears.

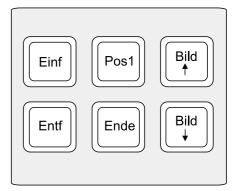
With the keys (red (page up) and (red (com), the picture can be enlarged or reduced (com) function) for a better view.

New outlines can be inserted continuously whereby a blue point is indicating the inserting place.

With the keys [\] (Pos1) and [\] (End) NC blocks can be moved forward and backward, they do


then appear in red. Those moved NC blocks can be inserted or deleted with the keys |

(Change) or *M* (Delete).


The block numbers are automatically numbered continuously (increased).

Max. 100 blocks can be programmed in a program with GPE.

Programming is finished and the program is stored with F7.

Key field operating panel

and suitable keys on the PC

Basic menu 1 (switch with F6)

CN	IC9	00)	/0	HA	AN		1	ŀ	1AI	ŧU	1																	
Y																													
x																													
-																									5(ale	10.	000	
Œ)	P	01	[N]			2	_	×	LI	NE		/	-	ARC	CG	2	I	G	-	AR	C G	3	I	Г),	CHA	MFI	ER

- F1 Insert point
- F2 Insert straight line
- F3 Arc G2 (clockwise)
- F4 Arc G3 (counter-clockwise)
- F5 Insert phase and rounding

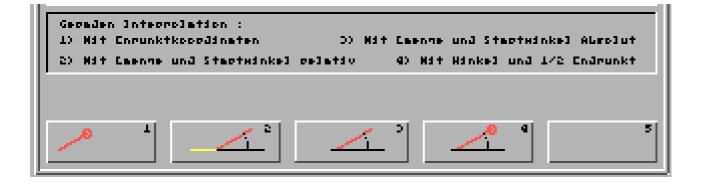
Basic menu 2 (switch with F6)

Ch	<mark>1C9</mark> (90	/(CHA	AN .	.1		1AN	IU	I																
Y																										
	· ·																									:
	· ·																									
	•																									
X	· ·										•	•	•			•								•		· ·
		•	•	•	•	•	•	•	·	•	·		•	·		·		·	·	·	•	•	•	ale	10.	
Ed	lit]	[nv	ert					Mir	ro	r		Е						Т			

- F1 Program edit with full function range (F, G, M etc.), if a ASCII keyboard available actual
- F2 Processing direction turn around
- F5 Outline reflect
- F4 Horizontal zero setting
- F5 Vertically zero setting

2.11.2 Inserting a point

With the numerical keyboard the coordinates of one point can be input and inserted with key (s).



The input point is started with rapid traverse (G00).

2.11.3 Insert a straight line

With the numerical keyboard the coordinates of a straight line can be input and inserted with key Solution (Solution). One sets always at the blue point.

Selection of the different types of the straight line generation:

- F1 Linear interpolation with Input of the terminator point coordinates
- F2 Linear interpolation with Input of length and start angle relative
- F3 Linear interpolation with Input of length and start angle absolutely
- F4 Linear interpolation with Input of angle and 1/2 terminator point, i.e. that only one of the coordinates must be input. The coordinate input last is taken over.



linear interpolation with Input of the terminator point coordinates

The terminator point coordinates input from the start point to a linear (G1) is inserted.

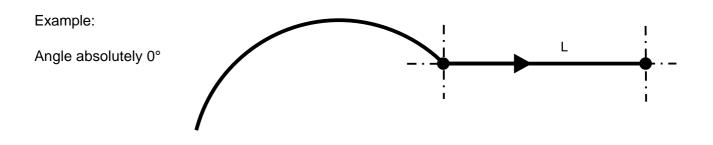
	Ger	adeninterpol	lation mit l	Endpunktkoor	dinten
	Z	0.000	X	0.000	

Linear interpolation with the terminator point coordinates (E) Z and X

linear interpolation with Input of length and start angle relative

A linear with length and start angle is relatively inserted by the start point.

	Gerad Laenge	eninterpol.	ation mit 000	Laenge Winkel		artwinkel 0.000	relativ
Linear interpolation with length (I) and Start angle (SW) to the preceding b	l relative					! !	
Examples: Angle relative 0°					- · -		
i.e. tangential to the preceding b	block						
Angle relative 45° to the preceding b						sw	



linear interpolation with Input of length and start angle absolutely

A linear with length and start angle is absolutely inserted by the start point.

Geradeninterpo Laenge :	olation mit : 0.000	Laenge und Sta Winkel :	rtwinkel Absolut 0.000	

Linear interpolation with length (I) and final angle (EW) absolutely

linear interpolation with Input of final angle absolutely and 1/2 terminator point

The terminator point coordinates with 1/2 terminator point and final angle, input from the start point to, absolutely a linear is inserted.

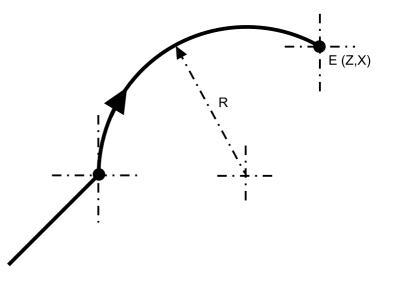
0.000

Linear interpolation with 1/2 terminator point and final angle (EW) absolutely The indicated angle actual of the final angles the programmed straight lines with that indicated direction in Z or X. Examples: Final angle absolutely 60° to Z Final angle absolutely 30° to X

2.11.4 Inserting an arc

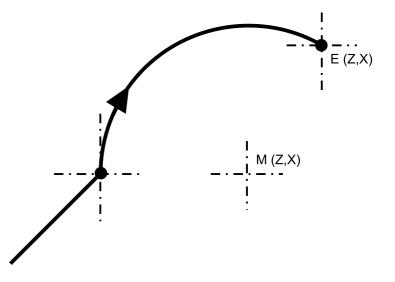
With the numerical keyboard the coordinates of an arc can be input and inserted with key . One sets always at the blue point.

CONTRACTOR OF THE OWNER	koordinate t und Mitt	en und Radius telpunkt		0.020-02	Radius Radius			winkel Endpunkt
							111111	
 1		2		3		1.57	4	
 		-	4	3		_	- T	


- F1 Circular interpolation with terminator point coordinates and radius
- F2 Circular interpolation with terminator point and centre point
- F3 Circular interpolation with radius and final angle
- F4 Circular interpolation with radius and 1/2 terminator point i.e. that only one of the coordinates must be input. The coordinate input last is taken over.

Circular interpolation with terminator point coordinates and radius

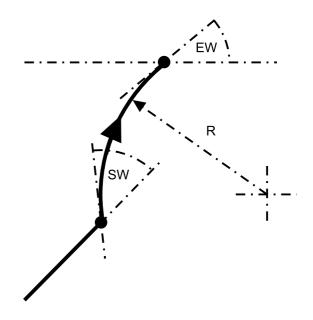
Circular interpolation in the clockwise direction with terminator point coordinates (E) Z and X and radius (r)



Circular interpolation with terminator point and centre point

		nterpolati ttelpunktk			n mit Endpunktkoord	linaten
<u> </u>	Z	0.000	X	0.000	0.000	0.000

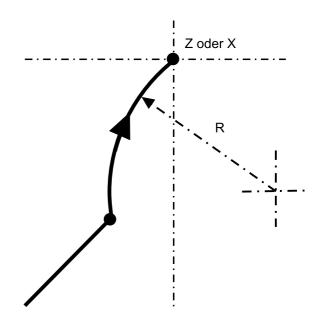
Circular interpolation in the clockwise direction with terminator point coordinates (E) Z and X and Mittelpunkkoordinaten (m) Z and X



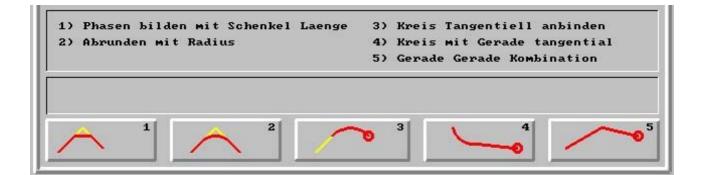
Circular interpolation with radius and final angle

 Kreis SW:	interpola 0.000	ation mit EW:	Radius un 0.000	d Endwinkel Radius :	0.000	
		100			1	

Circular interpolation in the clockwise direction with radius (r) and start angle (SW) and final angle (EW)

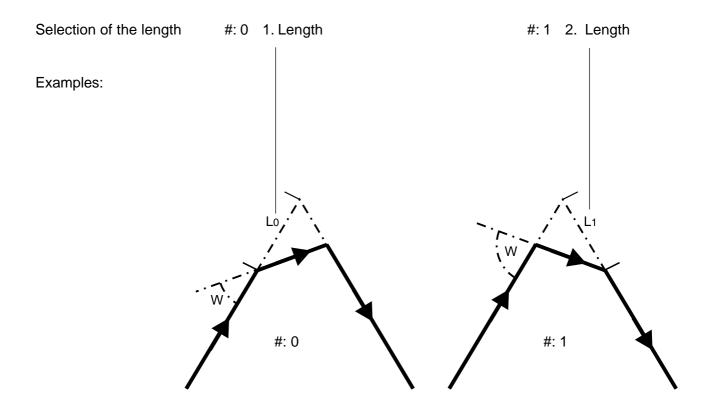


Circular interpolation with radius and 1/2 terminator point


\wedge	Z	0.000	X	it Radius und 1/2 P 0.000 Radius :	0.000
	1			(*************************************	

Circular interpolation in the clockwise direction with radius (r) and 1/2 final position (Z or X)

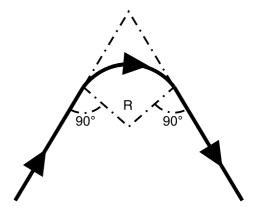
2.11.5 Inserting a chamfers or roundness


- F1 Chamfers form with leg length
- F2 Round off with radius
- F3 Circle tangential tie up
- F4 Circle with linear tangential
- F5 Combination linear with linear

chamfers form with leg length

\frown	Laenge :	0.000	Winkel :	0.000 # :	0
	1		100	11	

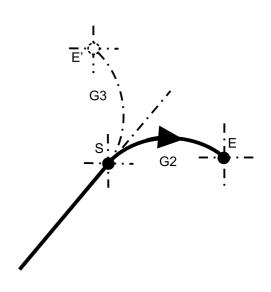
Chamfers at an edge with leg length and angle (w)



Rounding off with radius

Ecken Abrunden mit Radius Radius : 0.000

Corner-round off with radius (r)

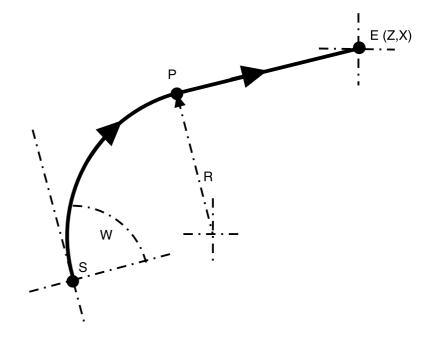


Circle tangential tie up

Kreisi	nterpolat	ion mit	Endpunkt	und tang	entieller	Anbindung
Z	0.000	X	0.000			
					1	

Circular interpolation with corner point and tagentieller binding

G2 or G3 become automatically according to the position of the terminator point (E, E ') selected

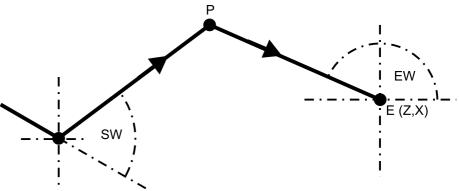


Circle with linear tangential

9	Kombin	ation Kr	eis Ger	ade mit ta	angenti	aler Anbind	lung	
	Z	0.000	X	0.000	R:	0.000	ω:	0.000
								1

Combination circle - linear with tangential binding

The position of the transition point (p) actual unknown.



Combination linear - linear

2	ation Ger 0.000	X X	0.000	SP1 -	0.000	EW :	0.000
4	0.000	<u>^</u>	0.000	-we	0.000	LW.	0.000
					H		

Combination linear - linear with start angle, final angle and Terminator point with the coordinates Z and X The start angle actual relative to the preceding block.

The position of the transition point (p) actual unknown.

2.11.6 Editing

If the processing direction determined, still the functions (F, T, G, M) know actual are inserted into the program.

- F1 Program edit with full function range (F, T, G, M, P etc.), if a ASCII keyboard available actual
- F2 Processing direction turn around
- F3 Mirrors (in both axes)
- F4 Horizontal zeros (settings the white point on zero)
- F5 Vertically zeros (settings the white point on zero)

2.11.6 Editing (continued)

Program edit with full function range

The program can with full function range (F, T, G, M, P etc..) are edited, if a ASCII keyboard available actual

F,G M,T N60 G1 2-21 X26	

3. **Program configuration**

3.1	Program	3 - 2
3.2	Block	3 - 2
3.3	Word	3 - 2
3.4	Mathematical expression	3 - 2
3.5	Block functions	3 - 3
3.6	NC- Syntax	3 - 4
3.7	Feed	3 -13
3.8	Spindle speed	3 -14
3.9	C-NC Syntax 3.9.1 Programming Example 3.9.2 Commissioning 3.9.3 NC Elements 3.9.4 Compatibility with the NC interpreter 3.9.5 Error messages from the C interpreter 3.9.6 Marginal Comments	3 -15 3 -16 3 -17 3 -19 3 -39 3 -40 3 -41
3.10	Input / output (I/O)	3 -41

3. **Program configuration**

3.1 Program

Each program begins with a program number with a maximum of 7 digits (DOS - PC) and/or 9 digits. The program consists of individual blocks.

3.2 Block

Each block is identified by a block number with a maximum of 10digits. A block is made up of various words, which contain all instructions for an operation. The block length is variable (maximum 200 signs).

Blocks are identified in the program with ascending block numbers. This determines the sequence when the program is running and means that identical block numbers are not acceptable.

3.3 Word

A word consists of an address and a data section. The word length is variable. All words which can be contained in a block are included in the following table.

3.4 Mathematicals expression

A number can be also replaced by a mathematical expression in round brackets.

For example: ((110 + P20) / 3)

3.5 Block functions

Word	Address	No. of words per block	Data digits	Dimensional unit	Effect	Description in section
Block number	Ν	1	10 #		block by blo	ock
Feed	F	1	x ~	mm/min	modal	3.
Spindle speed	S	8	Х~	1/min	modal	3.
Traverse conditions	G	8 *	10 #		modal/blb	y-bl. 4.
Circle centre point	I / J / K	1	х ~		modal	4.
Circle radius	R	1	х ~		modal	4.
Cycle	G	8 *	10 #		block-by-bl	ock 5.
Additonal functions	М	8	3 #		modal/blb	y-bl. 6.
ΤοοΙ	Т	1	10 #		modal	7.
Parameters	P / q	x	x		modal/blb	y-bl. 8.

Key: ~ Floating point

Integer

* Traverse condition and cycle together 8 per block

All other letters can be used for axis terms.

3.6 Syntax

Fundamental construction of a NC block:

Example :

N10 G01 F100 T03 M100 P30:(P20+35)*3 X200.0000 Y400.550 { comment }

	Axis position Floating point
	Parameter calculation Floating point
	M - Function Integer, 3 digits
	T tool number Integer, 10 digits
	F feed Floating point
	G - Function Integer, 10 digits
	N block number Integer, 10 digits

Block length = 200 signs

General functions

- / Block skip
- \ Chain blocks, i.e. several blocks are joined to one NC block.
- () Bracket functions, mathematical expressions or comment
- {} Bracket comment
- : Allocation
- \$ Signal for hexadecimal numbers
 Hexadezimale expressions must be completed with the separating sign(;)!
 e.g.: N10 G01 F1000 P500 : \$1AF; X: P500

Axes

Axes can be marked:

- with a letter	X, Y, Z, U, V, W
	X100, Z33

- with a letter and index 1 to 8 X1, X2, X3 . . . X2:100, Z1:33 . . .

Clear parameter content

P500: - - clears the content of P500

Comparison operators

=	Equal	Example : P500=110.50 (Skip to block 50, if the content of P500 = 110)
>	Larger	
<	Smaller	
<>	Unequal	
>= =>	larger equal	
<= >=	smaller equal	

If the skip - condition is fulfilled, it is skipped to the indicated block number.

Calculation operators

* - / % mod	Multiplication Addition Subtraction Division Modulus	Example .: P500:P200*5 P500:P200+P201 P500:P200-1 P500:P200 / 2 P500:P200 10
sin cos asin acos	tan atan	The trigonometrical functions use degree ! P500:sin(90) P500:acos(P10)
or and	not	Bit operations P500:P500 or \$100;
sqr int intr abs In Iay exp	Square root Integer value Rounding on integer Amount Logarithm with basis e Logarithm with basis 10 Exponent	
del test i	f cleared	P500:del(510) Feedback value : 0 parameter not cleared 1 parameter cleared

Functions are always written in lower-case letters!

Definition of a tool radius t

If no tool administration is existing in the system, a temporary correciton radius can be defined with identification 't'. With this correction radius, the subsequently activated radius correction (G41/42) is working.

Example:

N10.. N20 t:0.5 N30 G1 X100 Y100 G42 N40..

When programming 't'

- the tool radius is written and
- the tool radius correction is deleted in the active data block (P8150 ...)

The quadrant of the 't'-correction is always 0!

Syntax of symbolic variables

Symbolic variables always do start with the sign '_' (e.g.: _abs, _test5, ...), they may have a maximum length of 30 signs. Capitel and small letters are allowed, but the meaning of _karl may not be the same as _Karl! (case-sensitive).

Binding a symbol to a parameter

_wegx ::= 500;

According to this definition, _wegx is in place of P500, i.e. both expressions are equivalent according to the above mentioned example (_wegx <--> P500).

P500 : 10 _wegx:=10

Indexing is allowed at parameter variables. Example

_wegx(0) := 10; (d.h. P500:10) _wegx(1) := 11; (d.h. P501:11)

Internal variables

_wegxy := 500;

If a value is assigned to a variable, which is not 'bound' to a parameter, this variable is allocated as internal variable. That means that values can be stored without using a parameter. Variables that are not initialized have the value 0. Internal variable do only exist as long as the NC program is active. Internal variables can not be displayed directly (e.g. at a program test).

Example

n10 _test1::=12 (Binding to P12) N20 _test2:=10 (internal variable) N30 G00 X:_test1 Y:_test2 N40 ...

Text output of NC programs

Arbitrary texts from NC programs can be displayed in the message line. When switching back to MANUAL, texts that are eventually standing in line, are deleted.

Delete syntax messages

N10! N10 M33 P1:23 !

The identification '!' may also be programmed with other NC block elements in the same NC block. However, '!' has to be the last sign of the block!

Displaying messages with predefined colours

N10 ! this is a message text white letters on blue bottom N20 10, this is a message text black letters on grey bottom N30 !1, this is a message text white letters on blue bottom

Displaying messages with colour selection that can be defined freely.

N40 IS8E, this is a message text (yellow on black) N40 lcode, this is a message text code = HF + VF HF (background colour) VF (Forefront colour) 80 black 0 black 90 blue 1 blue 2 A0 green green B0 turquoise 3 turquoise C0 red 4 red D0 magenta 5 magenta E0 brown 6 brown 7 F0 light grey light grey

- 8 dark grey
- 9 light blue
- А light green
- В light turquoise
- С light red
- D light magenta
- Е vellow
- F white

Working sequence of the block interpreter

- 1. Parameter calculations, Parameter allocations are executed in the sequence programmed in the NC block.
- 2. Parameter skips are executed in the sequence programmed in the NC block.
- 3. M Function Skips are executed in the sequence programmed in the NC block.
- 4. Sub-program call M28

The sequence of the block elements when dispatching at PLC (real time)

- 1. Block number
- 2. Parameter (real time parameter)
- 3. S-value
- 4. T-value
- 5. M-function before traverses / after traverses

Enlarged syntax

The NC interpreter offers with System-Calls (sc) further possibilities, to shift the interpreter -mode or to trigger functions.

Syntax sc: n

Function numbers

- 0 Activating of interpreter-mode 0, standard mode. - Is always preset at NC program start.
 - Each block produces a block end. When switching on the interpreter to the next NC block a block change command results, with which the NC block informations are transmitted to the following modules.
- Activating of interpreter-mode 1, supervision mode.
 In mode 1 the block change command is suppressed. When switching the interpreters to the next NC block no block change command results. Because the analyzed NC block elements are only transmitted to the following modules with block change, they remain now for the time being in the block interpreter. (This does not count for the additonal functions.)
 - When switching back to mode 0 a block change command is given.
- 2 Activating the interpreter mode 2
 - supervision mode at M26

- as mode 1, however, when switching the mode, the system waits until it gets a feedback from the previous NC block. E.g. if you want to make some calculations or supervising loops while an axis is moving, the calculation and/or test loop will start at the beginning of this movement (and the pipeline of the NC control is previously deleted).

- A block change command is sent when switching back to mode 0.

Example of a supervision loop

While N10 is processed, supervision functions can be perceived in the loop (N30 . . . N50).

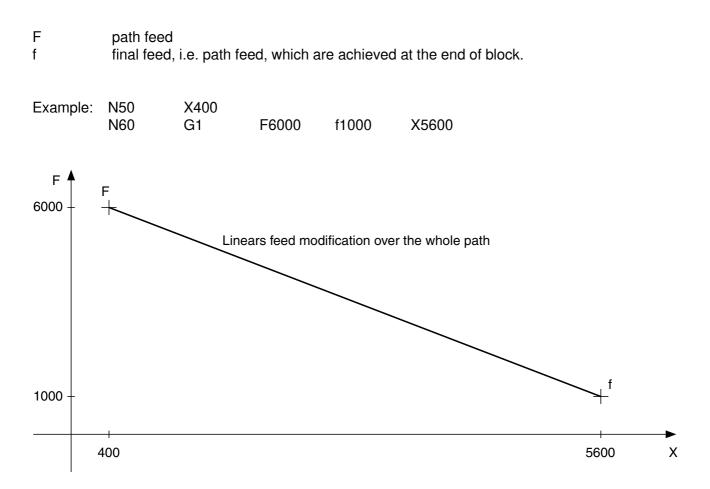
N10	G01 F100 X1000	
N20	sc :1	changeover in mode 1
N30	P500>P501.140	skip, if supervision loop should be left.
N40		
N50	M23.30	skip to the beginning of the loop
N140		
N150	sc :0	end of the supervision loop
N200	G00 X200	

100 Triggering of a block change command - In interpreter mode 1 a block change can be forced herewith.

CNC PROGRAM CONFIGURATION

3.7 Feed

The feed with the address letter F is programmed in mm or inch according to the set unit of measurement.


G94, G95 and G99 determine the feed modification.

- G94 Feed in mm/min G95 Feed in mm/r
- G99 Block end feedrate in mm/min

A programmed feed is effective modally and can only by overwritten with another feed.

Through positioning in rapid traverse (G00) the previously stored effective feed is not cleared, but becomes effective again with G01, G02 and G03.

With the feed-override-potentiometer the programmed feed can be changed in the area of 0 to 120%.

3.8 Spindle speed

The spindle speed is programmed with the address letter S. With index 1 to 8 several spindles can be programmed.

Example: \$1000 \$1:1000 : \$8:8000

G96 and G97 determine the speed modifications.

- G96 constant cutting speed in mm/min
- G97 number of revolutions in 1/min

The spindle speed is effective modally and can only be overwritten through another spindle speed.

With the spindle-override-potentiometer the programmed spindle speed can be changed in the area of 0 to 120%.

3.9.1 Programming Example

```
P1000
     // Program - example
     int idx=0;
     double step_x=1.234;
     P100:1;
     G0 X0 Y0 Z0
N100 P100:P100+1;
     if (P100>6) M23.200 //====>N200
     if (P100>5)
     {
     G0 X123;
     }
     else
     {
     G0 X99;
     }
     G1 F1000 X100 M543;
     for (idx=0; idx<5; idx++)
     ł
     G91 F123 X:step_x;
     }
     G1 G90 F1000 X123.5 Y82.6
     G0
           Z150
     G1 F5000 X99.5 Y43.123
     M23.100
N200 M30
#
```


3.9.2 Commissioning

3.9.2.1 System Requirements

Necessary Software- Versions:	CNC : BS-Version : 160 / 220 or higher Panel: PPCIMAGE/QT900 : Version 160 or higher current show_e
 nc_line_mode must be enabled C- Interpreter must be enabled 	(System-wide setting) (channel-specific)

3.9.2.2 Activation nc_line_mode

In order to execute NC programs in C interpreter mode, the system must be operated in nc_line_mode.

If nc_line_mode is activated, NC blocks do not necessarily start with block numbers; NC Editor is line oriented.

Activation of nc_line_mode: Entry in the file netconf in the CNC: 'nc_line_mode'

nc_line_mode- Status, see q41 q41 : Panel - System-Status-Infos : q41 is written by the power-on routine by the system. Content: Byte 1 :

Bit 0 : 0 : nc_line_mode is not enabled

NC blocks must necessarily begin with 'N' or '/ N'. NC-Editor is block - oriented. When switching from nc_line_mode enabled, to nc_line_mode disabled the NC -Memory has to be deleted.

1 : nc_line_mode is enabled

NC blocks do not have to necessarily start with 'N' or '/ N'. Jump Labels still have to start with 'N' or '/ N'. When switching from nc_line_mode disabled to nc_line_mode enabled, it is not necessary, delete the NC-Memory.

3.9.2.2 Activation nc_line_mode (continued)

IO-INPUT :

- NC Program Input: Blank lines are not filtered.
- Phrases starting with ';' be filtered as before!

NC Editor is line oriented. (Display the line number) NC block numbers now act as entry point for NC block jumps. Jump-marks must be in ascending order!!

e.g.:

G01 F1000 X100 M23.100 --> Jump to Mark N100

N100 X150 G04.1 X100

Function: NC Renumber is blocked at nc_line_mode enabled. During the teaching of NC blocks, no block number is inserted.

In AUTOMATIC Picture NC blocks are displayed with line numbers.

The following parameters now contain line numbers:

	3 F · · · · · · · · · · · · · · · · · · ·
P8695	Line number at RWL
P8696	Line number at the measuring position recording
P8803	Line number at NC program abort
P8901	current line number NC program real-time
P8905	current line number cycle real-time
P8907	Line number at NC program abort
P8911	Line number of the incorrect block
P8914	current line number in subroutine call
P9301	current line number NC program pre-analysis
P9305	current line number Cycle pre-analysis
P11146	Line number of the last edited NC program
P11152	not used
P11153	not used
P11154	not used
P11184	current line number at IO In-/Output

3.9.2.2 Activation nc_line_mode (continued)

The following parameters contain As before block numbers:

P8801 NC Start block number

P8821 Emergency program 1 block number

- P8823 Emergency program 2 block number
- P8825 Emergency program 3 block number
- P8827 Emergency program 4 block number

3.9.2.3 Activation of C-interpreter

- P8805 : Selection NC Interpreter
 - 0, -- : NC program is executed with standard NC Interpreter. Automatic mode display: AUTO
 - 1 : NC program is executed with C-NC Interpreter. --> C- Syntax Automatic mode display: AUTOC

--> See the menu: Start data C interpreter

3.9.3.1 NC Elements

Definition :

NC elements are : - Axis identifiers X,Y,... x,c.. - axis CMD a(pos) - N, M, G, F, f, S, R, I, J, K, T, t, tr, tq, tl, P.., p.., q.. - sc.. sc1 - ! - internal Vars (starting with '_') Example: _ncvar

- NC Functions / Functional

- NC elements are prohibited as a variable name

A separator must be programmed between NC elements!
Separators are:
';' (Semikolon)
' (Blank)
operators

Example: F1000 x100 c45 P500:12;P501:13; P100:P123 mod 5

Are NC items in the block, the NC Items will be executet with block end, i.e., NC-elements will be send to 'real time'.

-'N' will only accepted as entry point, if programmed at the 1st digit of the line!

3.9.3.2 Block Commands

{ : C- Beginning of Block} : C- End of Blocke.g.:

{ int abcde;

; }

M2 / M30 may NOT be programmed out of C blocks!

NC block jumps may NOT be made out of C blocks! (--> see message M1375)

3.9.3.2 Block Commands (continued)

- M23 jumps M23.xx, NC block jumps are: - defined jump-M functions Mxxx.xxx - parameter jumps P100=P101.xxx _test=_test1.xxx - M24/M25 - M29 e.g. 1: correctly N100. . // C- block start { int abcde=0; // C- end of Block } G01 F1000 X100 G54 M23.100 // Block jump is allowed . e.g. 2: !!false!! N100. // C- block start int abcde=0; // Block jump INADMISSIBLE --> M1375 M23.100 // --> NC block jumps may not be made out of C blocks !! // C- end of Block } G01 F1000 X100 G54 . If the C-block start and C-block end is in the same line, this block is filtered out as a comment. e.g.: if (test>10) { I'm a comment} P500:test;

3.9.3.3 Comment

// Comment from / / to end of line
e.g.:
G0 X100 // Traverse the X-axis

/* Comment-start */ End comment e.g.: G0 X100 /* text text text */ G0 Y100

For single-line comment '{' and '}' may also be used. (NC-Compatible)

```
e.g.:
if (test>10) { I'm a comment }
{
P500:test;
}
```

3.9.3.4 Constants

M_PI (3.14....) Example: myint=M_PI;

3.9.3.5 Definitions

#define defname defconst

e.g.: #define axis1 1

Definitions apply globally. ! The '#' is not at the beginning of line!

3.9.3.6 Includes

#include <fname>

e.g.: #include <myinclude> File 'myinclude' will be included

Character '#' must not be at beginning of line!

Function declarations in the main program apply globally across all programs until the program ends.

Function declarations in a subroutine are local to this subroutine.

3.9.3.7 Data types and scope of application.

char unsigned o byte short unsigned s int unsigned i long unsigned I float double string	char : 1 Byte : 1 Byte : 2 Byte : 2 Byte : 2 Byte : 4 Byte : 4 Byte : 4 Byte ong : 4 Byte : 5 Floating : Double : 1 byte	signed -12 unsigned unsigned signed -3270 unsigned signed -214748364 unsigned g-point single precision precision floating point NLY one-dimensional g, ie NULL Terminated	0 0 68 0 48 0 48 0	127 255 255 32767 65535 2147483647 4294967295 2147483647 4294967295
e.g.:	teststr="abc"; teststr[0] : 'a' teststr[1] : 'b' teststr[2] : 'c' teststr[3] : 0			
e.g.:	Simple data types of double dwert1; double dwert1, dw double dwert1=1.0 int a=1; int a,b=1,c; char mych=65; char mych='A';	vert2, dwert3;		
	Declaration of arra double dwert[20]; int xxxxx[3,2];	ys: // One-dimensiona // Two-Dimensiona	•	

3.9.3.7 Data types and scope of application (continued))

```
Deklaration von Strings:
string myname;
string myname="hugo ";
```

Scope of declarations:

- Declarations in the main program (not defined in a block) are global across all programs until the program ends.
- (Also applies to declarations of include files which are includiert from the main program.)
- Declarations in a subroutine apply only locally in this subroutine.
- Declarations in functions that apply to the function end.
- Declarations in a block, valid until end of block.

```
e.g.:
{
int test1;
.
}
```

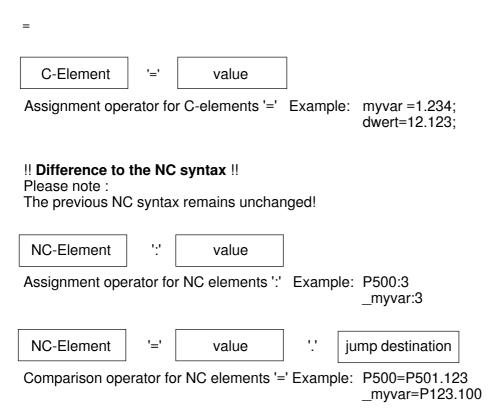
- Declaration within a block, displaces a declaration outside of the block until the block end.

```
e.g.:
```

- Declaration in a subprogram, displaces a global declaration until end of the subroutine.

3.9.3.8 Hex code

```
$ $ generally valid.
```


0x 0x ONLY allowed in a C syntax element, that is, hex code '0x 'can NOT be used with NC-elements. !! 'x' is the POLAR radius identifier. !!

e.g.:

```
correctly: P1:$ff;
i=0xff;
false: P1:0xff;
X:0xff;
```


3.9.3.9 Assignment Operator

3.9.3.10 Arithmetic Operators

* / + -	:	multiplication division division (Devia addition subtraction	ating from the stand	ard C: In C is %: modulo)
**	:	potentiate	tst=10**3	>1000
mod		modulo	tst=23.2 mod 3	>2.2

3.9.3.11 Comparison Operators

== !=

>=

<=

3.9.3.12 Logical Operators

!	not	logically
	Or operator	logically
&&	And operator	logically

3.9.3.13 Bitwise Operators

&	And operator Bit Operation	e.g.: aa=bb&cc
	Or operator Bit Operation	e.g.: aa=bb cc;
۸	Exclusive Or Bit Operation	e.g.: test=test^\$ff;
<<	Shift operator to the left	e.g.: test=test<<2;
>>	Shift operator to the right	e.g.: test=test>>2;
~	BitComplement	e.g.: test=~test;

3.9.3.14 Combination Operators

++	increment	e.g.:	aa++;	> aa=aa+1;
	decrementing	e.g.:	aa;	> aa=aa-1;
	Take note: P500: delete Parame	eter		
+=	addition	e.g.:	aa+=5;	> aa=aa+5;
-=	subtraction	e.g.:	aa-=5;	> aa=aa-5;
=	multiplication	e.g.:	aa=5;	> aa=aa*5;
/=	division	e.g.:	aa/=5;	> aa=aa/5;
>>=	Shift to the right	e.g.:	aa>>=2;	> aa=aa>>2;
<<=	Shift to the left	e.g.:	aa<<=2;	> aa=aa<<2;
&=	And operator Bit Operation	e.g.:	aa&=\$ff;	;> aa=aa&\$ff;
^=	Exclusive or Bit Operation	e.g.:	aa^=\$ff;	> aa=aa^\$ff;
=	Or operator Bit Operation	e.g.:	aa =\$ff;	> aa=aa \$ff;

3.9.3.15 General functions / system functions

Default : Arguments in DEGREE

Function Name+ '(' + Function arguments.. + ')'

asin() acos() atan() sin()

cos()

tan()

3.9.3.15	General Functions / System Functions (continued)
deg() rad()	Conversion rad> deg ; tst=deg(3.14); Conversion deg> rad ; tst=rad(180);
log2() In() exp() log()	Binary logarithm e.g.: tst=log2(16);> tst=4 For system version <230 : result: integer From System Version 230 : result: double
abs() int() intr() sqr()	absolute Value $tst=abs(-1.2) \rightarrow 1.2$ integer Value $tst=int(1.667) \rightarrow 1$ Rounding to integer $tst=intr(1.667) \rightarrow 2$ Square root $tst=sqr(4)$
rnd()	Random value/random number tst=rnd(3.4)> Random number in the interval:-3.4 3.4
msleep(r) n : [msec] Time for execution of the command
	Return value of msleep: System timer [msec] at the command call
	n: -1 :no yield of msleep, n: 0 :1 x yield n:>0 :yield, until n reached
printf()	Formatted output to the upper message line (such as '!') printf(control, arg1, arg2)
	II Format elements and arguments must match the number and type!
	 Format elements : %d : Decimal Representation %nd: Decimal Representation n: minimum Field width %x : Hexadecimal Representation n: minimum Field width %f : The argument must be float or double, and is represented by 6 decimal places %n.mf: The argument must be float or double, and is represented by 6 decimal places %n.mf: The argument must be float or double, and is represented by 6 decimal places %r. minimum Field width m: Number of digits right from the decimal point (it m==0> 6 decimal places) %c : The argument is a single character %s : Argument is a string

3.9.3.15 General Functions / System Functions (continued)

e.g.:

int i=5; double dd=0.123; char ch=\$51; string str="Hello World"; printf("output -->'%d' '%f' '%c' '%s'",i,dd,ch,str); Output: output -->'5' '0.123000' 'Q' 'Hello World' printf("output -->'%3d' '%6.2f'",i,dd); Autput: output -->' 5' ' 0.12'

Choice of colors for the message line:

default Color:	Foreground color:	white
	Background color :	blue

If the output string starts with "\$xx,", "\$xx," is for color selection and won't be displayed.

Color definition: \$xx = HF + VF HF (Background Color) =	80 90 A0 B0 C0 D0 E0 F0	black blue green turquoise red magenta brown light gray
VF (Vordergrund- Farbe) =	0 1 2 3 4 5 6 7 8 9 A B C D E	black blue green turquoise red magenta brown light gray dark grey light grey light blue light green light turquoise light red light magenta yellow

- E yellow
- F white

3.9.3.15 General Functions / System Functions (continued)

unlink(file_name) delete File file_name : "_ncram/P1000" "//server/ncdata/P1234" "//control_panel/ncdata/P1234"	: File in the NC memory : File from the file server : File in the control panel
Return: 0 : Function executed error-free !=0 : Error code	9e
e.g. : int err; err=unlink("_ncram/P1000	");

3.9.3.16 String Manipulation

= copy String e.g .: string2 = string1;

+ Combine strings e.g.: string3= string1+ " abc " + string2;

==

- != Compare string e.g.: if (string1 == string2)... if (string1 != string2)...
- strlen() Determine the string length
 string mystring="abcd";
 len=strlen(mystring); // --> len : 4
- mid(str,idx,len) str : source string idx : Index in the source string [0..n] len : string length

Returns a string, starting at index idx with length len. Return a null string if the string is empty or index idx outside source string.

e.g.: stringx="Hello World"; stringy=mid(stringx,1,4); // stringy=="ello"

3.9.3.16 String Manipulation (continued)

idx=find(str,suchstr)

	str searchstr Return	: source string : searchstr index in the source string [0n]
	idx	: -1 , if searchstr not found in str : 0n , if searchstr found in str
e.g.:	stringx subs	="bananas"; = find(stringx,"an"); // subs == 1

stringx[idx] Indexed String Access [0..n]

e.g.: chx = string1[2]; string1[1]='A';

chr(n) Conversion ASCII code --> string

e.g.: mystring=chr(65); // mystring == "A"

	itoa	Integer Conversion to string
--	------	------------------------------

e.g.: string mystr; int myint=15; mystr=itoa(myint); // --> mystr : "15"

- hex(val) Integer Conversion according to string with base 16 (hexadecimal)
 - e.g.: value=35243; stringx=hex(value); // stringx == "89ab"
- ftoa Conversion float (double) to Ascii (String)
 - e.g.: string mystr; double mydoub=15.1234; mystr=ftoa(mydoub); // --> mystr : "15.1234"
- atof() Conversion String to Float (double)
 - e.g.: string mystr="15.1234"; mydoub=atof(mystr); //mydoub == 15.1234 On error: return value = 0.0

3.9.3.17 f- CMDs

fchksum(p	n); pn Return e.g.: P1		Programchecksum of a file in the NC memory Programnumber Filechecksum fchksum(123);
fexist(pn);	pn Return e.g.: P1	:	FileCheck in the NC memory Programnumber 0 : Program in the NC memory not available 1 : Program available fexist(123);
fnccopy(sro	c_pn, dst_pr src_pn dst_pn Return e.g.: P1	:	NC-Copy in the NC memory Source program number Target program number 0 : Function executed error-free >0 : Error code 1250 1299 fnccopy(1,123);
filecopy(sr	src_name dst_name	:	
	Filenamen	"//se "//co	erram/P1000" : File in NC_memory erver/ncdata/P1234" : File from the file server entrol_panel/ncdata/P1234" : File in the control panel ic5001/_ncram/P1234"
	Return :		Function executed error-free Error code 1200 1299
	e.g.: P1:file	эсору	("//server/ncdata/P1000","_ncram/P1000", 0);
funlink(file <u></u>		"//se	delete File ram/P1000" : File in NC_memory erver/ncdata/P1234" : File from the file server entrol_panel/ncdata/P1234" : File in the control panel
	Return :	0 >0	Function executed error-freeError code 1200 1299
	e.g.: P1:fu	nlink("	_ncram/P1000");

Edition 06.2014

3.9.3.18 if/else- Authorizing

```
The if-else statement is used in making decisions.
The else part is optional.
Syntax :
if (Expression)
Statement1;
```

else

Statement2;

If the expression has a value different from 0, so Statement1 is executed. If the expression value is 0, statement2 is executed if an else part is present. Assignments in the expression are not allowed! Example: if (iwert = abc) ...

```
e.g.:
if (iwert > 100)
{
G0 X100;
}
else
{
G0 X200;
}
```

or

```
if (P[2,500] == 1)
{
do_something();
}
```

Caution:

```
For single-line comment '{' and '}' may also be used. (NC-Compatible)
e.g.:
if (test>10) { I'm a comment }
{
P500:test;
}
```


3.9.3.19 switch- Authorizing

The switch statement is a special kind of selection among several alternatives. If this is the case, then the branch is accordingly.

```
Syntax:
switch (Expression)
case konst1:
      Statement1:
break;
case konst2 :
      Statement2:
break;
default :
      Statement3;
break:
}
Expression is evaluated and gives a result. The result must be an integer.
The result is compared with all the case constants.
Is there a case constant matches the result, the execution of the program
in this case label is continued until the break statement.
With the break statement the switch will exit.
If there is no match, the process continues with the default label.
default is optional.
Assignments in the expression are not allowed! Example: switch (test1 = abc) ...
```

```
e.g.:

switch (test1)

{

case 1 :

G0 X100;

test1=2;

break;

case 2 :

G0 Y100;

test1=100;

break;

default :

test1=1;

break;

}
```


3.9.3.20 for- Loop

for(Expression1; Expression2; Expression3) Statement

Expression1 is used to initialize the loop. Expression2 defines a test that is evaluated before each execution of statement. If Expression2 has the value 0, the loop is finished. The term expression3 is performed at the end of each repetition. Each of the three expressions may be missing.

```
e.g.:
for(i=0; i<10; i++)
{ // Loop describes P500: 0
 // P500: 1
 //..
 // P509: 9
 P(500+i):i;
}
```

3.9.3.21 while- Loop

while(Expression) Statement

Statement are repeated as long as the value of the expression is not 0. Expression is evaluated BEFORE each execution of statement. Assignments in the expression are not allowed! Example: while (i = abc) ...

```
e.g.:
int i=0;
while(i<10)
{ // Loop describes P500: 0
// P500:1
//..
// P509:9
P(500+i):i;
i++;
}
```


3.9.3.22 do-while- Loop

do

Statement while(Expression)

Statement are repeated as long as the value of the expression is not 0. Expression is evaluated AFTER any execution of statement. Assignments in the expression are not allowed! Example: while (i = abc) ...

```
e.g.:
int i=0;
do
{ // Loop describes P500:0
// P500:1
//..
// P509:9
P(500+i):i;
i++;
}
while(i<10);
```

3.9.3.23 return-Instruction

In a function, the return statement ensures that the execution of the program resumes after the function call.

```
e.g.:

void funktion1( int xyz)
{

.

return; Exit the function

.

}

int funktion2( int xyz)
{

.

return 123; Exit from the function, and Define 123 return value.

.

.
```


3.9.3.24 break- Instruction

Break provides for the discontinuation of nearest do, for, switch, or while statement, a function of which the break statement occurs.

Program execution continues with the statement following the terminated do, for, switch, or while statement.

3.9.3.25 continue-Instruction

Continue must be in a do, for, or while statement. Continue ensures that the execution of the program will continue from the point at which a decision on the repetition of a do, for, or while statement will be made.

3.9.3.26 Defining and Calling Functions

```
Definition:
function_name(Parameter...)
{
Statement
}
```

call: function_name(Parameter...)

When calling the function, function parameters are passed by value. (Call by Value) that is, after the function call, the function parameters are the same, although they have been changed within the function.

e.g.:

```
void do_something(void)
{
// do_something
}
.
.
do_something(); // call
```


3.9.3.26 Defining and Calling Functions (continued)

e.g.:

```
void writepara10(int value)
{    // value is written to P10
P10:value;
}
.
writepara10(1234);
```

e.g.:

```
double get_alfa(double value)
{
  double result;
  result=atan(value);
  return result;
}
.
```

```
P11:get_alfa(P10);
```


3.9.3.27 Integration of classes

Declaration: class ClassVarName:Classname;

Call: ClassVarName.functionName(Parameter)

ClassVarName : any name Classname : File name of the class, without extension '.class'

e.g.:

//Declaration
class varx:myclass;

```
·
```

//Call : P11:varx.get_alfa(P10)

```
.
```

File : myclass.class //myclass.class double x,y;

```
//Constructor
void myclass()
{
    x=0.0;
    y=0.0;
```

```
}
```

double get_alfa(double value)

```
{
    double result;
    result=atan(value);
    return result;
}
//Filend myclass.class
```


3.9.3.40 System Kommandos

syscal(syscall_cmd, ...)

Read by CNC SYSTEM STRINGS

 string syscall(__CMD_READ_CNC_STRING__, str_num)

 str_num : stringnumber / Ident
 0x0000xxxx

 from 0x0001xxxx
 BWO systemstring - number

0xffffffff BWO systemstring - number

Return : CNC-String

e.g.:

string s=syscall(__CMD_READ_CNC_STRING__, 5);

Writing of CNC SYSTEM STRINGS

int syscall(__CMD_WRITE_CNC_STRING__, str_num, str) str_num : stringnumber / Ident 0x0000xxxx free customer string number from 0x0001xxxx BWO systemstring - number 0xfffffff BWO systemstring - number

str : String- content Return : Result : 0 : OK 1 : Failed to write the string

e.g.:

res=syscall(__CMD_WRITE_CNC_STRING__, 5, "Hello World");

3.9.4 Compatibility with the NC interpreter

If C-NC interpreter activated :

'(' ..')' should NOT used as a framing comment! '{' and '}' are allowed for single-line comment. Better use: /* .. */ or '/ /'.

Since version 162/222 from 14.09.2010 '(' .. ')' allowed as comment framing.

'|' was at NC interpreter the mod function (fixed decimal point) '|' at C-NC: or-bitoperator

Required separators at operators: so far: C-NC-Interpr.: P1:P2mod3 --> P1:P2 mod 3 P1:P2orP3 --> P1:P2 or P3 P1:P2andP3 --> P1:P2 and P3

necessary brackets for function calls: so far: C-NC-Interpr.: P1:notP2 --> P1:not(P2) P1:sinP2 --> P1:sin(P2) P1:cosP2 --> P1:cos(P2) P1:tanP2 \rightarrow P1:tan(P2) P1:asinP2 --> P1:asin(P2) P1:acosP2 --> P1:acos(P2) P1:atanP2 --> P1:atan(P2) P1:sgrP2 --> P1:sqr(P2) P1:intP2 --> P1:int(P2) P1:intrP2 --> P1:intr(P2) P1:absP2 --> P1:abs(P2) P1:lnP2 --> P1:ln (P2) $P1:logP2 \rightarrow P1:log(P2)$ P1:expP2 --> P1:exp(P2) etc..

3.9.5 Error messages from the C interpreter

- M1350 C Interpreter enabled but not active nc_line_mode (see q41)
- M1351 Syntax error: C Error NO Heaphen
- M1352 Syntax error: 'while' not programmed
- M1353 Syntax error: missing Semicolon
- M1354 Syntax error: missing Brackets
- M1355 Syntax error: invalid Type
- M1356 Syntax error: Variable not found
- M1357 Syntax error: Function not found
- M1358 Syntax error: error in Char-constants
- M1360 Syntax error: missing Comma
- M1361 Syntax error: invalid Operator
- M1362 Syntax error: invalid Parameter
- M1363 Syntax error: missing Point
- M1364 Syntax error: Jump Destination can not be found
- M1365 Syntax error: missing Colon
- M1366 Syntax error: Class not found
- M1367 Syntax error: unexpected EOF
- M1370 Syntax error: Prototype incorrect
- M1371 Syntax error: File not found
- M1372 Syntax error: Unsigned not possible
- M1373 Syntax Error: Invalid variable access
- M1374 Syntax error: Symbol programmed twice
- M1375 Syntax Error: NC jump in C block not allowed

3.9.6 Marginal Comments

- 11
- 'N' will mark only accepted as entry point, if it is programmed to first place!
- C-NC interpreter is case-sensitive.

3.10 Input / output (I/O)

DOS data format

Structure of a NC program file

Blank line (CR, LF)

Identification P/Z with program number (program number with max. 9 digits

NC block beginning with N or /N

···· ...

....

NC block

Program end sign (#)

EOF-sign (default : character 04)

Blank line (CR, LF)

Example: File name : P123456

P123456 N10 G0 X0 Y0 Z0 N20 F100 G1 X100 N30 M30 #

3.10 Input / Output (continued)

Structure of a parameter file

Blank line Identification D	(CR, LF) (at identification D:	parameter status is not overtaken exception: If mantissa programs,
	(at identification D+:	parameter status is overtaken Exception: If mantissa programs, however in the parameter status the loading bit (byte 1, bit 1) is not set, than the bit ' parameter loaded ' is set!
		example: D+ K1 P1: 123 S:\$32000100 in this case the status becomes to S:\$32000101!

q parameter number : parameter content [S: parameter status] * * [] optional

...

...

Program end sign	(#)
EOF-sign	(default : character 04)
Blank line	(CR, LF)

3.10 Input / Output (continued)

Structure of a parameter file

e.g.:

Filename : D123

0: —	S:\$00000000
1: 8	S:\$0000001
2: 2	
3: 30000	
4: —	
5: —	S:\$00000000
	1: 8 2: 2 3: 30000 4: —

or

D			
K1:P	10:	1	S:\$0000009
K1:P	11:	100	S:\$000000D
K1:P	12:	200	S:\$0000001
K1:P	13:	5	
K1:P	14:	—	
K1:P	15:	2	
#			

Extensions

starting from version 080 :

With identifier D+ knows the parameter status with the function 'SET ', or with which old parameter status with the function 'OR ' is set.

Example: Parameter status with function ' SET ': K1 P1: 123 S:\$32000101

Parameter status with function ' OR ': K1 P1: 123 S|\$32000101

4. Traverse functions

4.1	G00 Positioning at rapid traverse rate	4-6
4.2	G01 Linear interpolation	4-7
4.3	G02/G03 Circular interpolation	4-8
4.4	G123 Automatic selection of linear and circular interpolation	4-12
4.5	G04 Dwell	4-13
4.6	G05/G06/G07 Driving direction of roung axes	4-14
4.7	G08/G09 Precision stop block by block	4-16
4.8	G10/G11 Polar coordinate system	4-17
4.9	G12 Contour path, rapid programming	4-22
4.10	G13/G14 Tangential axis	4-25
4.11	G15/G16 Polar transformation	4-26
4.12	G17/G18/G19 Plane selection	4-30
4.13	G28/G29 Precision stop modal	4-32
4.14	G40/G41/G42 Milling cutter path correction offset	4-33
4.15	G43/G44 Axis correction	4-34
4.16	G45/G46 Turning of coordinates	4-35
4.17	GG47/G48/G49/G147 Robot transformation	4-46
4.18	G50/G51/G52 Spline interpolation	4-59
4.19	G53/G153 Machine zero point	4-62
4.20	G54 to G59 Zero points	4-63

4. Traverse functions

4.21	G60/G61/G62 Mirror imaging of coordinates	4-64
4.22	G63/G64 "100% feed rate"	4-66
4.23	G66 All offsets off	4-67
4.24	G90 Absolute dimension input	4-68
4.25	G91 Incremental dimension input	4-59
4.26	G92 Zero point shift	4-70
4.27	G94/G95 Feed modification	4-71
4.28	G96/G97 Number of revolution modification	4-72
4.29	G170 / G171 inch system	4-74

4. Traverse functions

The traverse functions, togehter with the traverse information, establish the geometric part of the program. They consist of the address letter G and a 10-digit number. One block may contain 8 traverse functions.

If the traverse functions and the appropriate traverse information are programmed in different blocks, the traverse functions in the program should always precede the traverse information. Traverse functions become effective before the programmed traverse information.

The following table contains the traverse functions made available by the control.

Traverse functions within a group overwrite each other mutually (in addition G92 is overwritten by G53 to G59).

The traverse functions preset at the start of a program are identified by an *.

The traverse functions in the program are displayed when the '?' key is pressed (except for the traverse functions which act block-by-block).

4. Traverse functions (continued)

Traverse functions		Effect
G00 G01* G02 / G03 G123	Positioning at rapid traverse Linear interpolation Circular interpolation, CW/CCW Automatic selection of linear and circular interpolation	modal modal modal modal
G04	Dwell	block-by-block
G05 / G06 / G07	Driving direction of round axes	block-by-block
G08 / G09	Precision stop, on/off	block-by-block
G10 / G11*	Polar coordinate programming, on	modal
G12	Contour path, rapid programming	block-by-block
G13*/ G14	Tangential axis off/on	modal
G15*/ G16	Polar transformation off/on	modal
G17 / G18 / G19	Plane selection XY / XZ / YZ	modal
G28 / G29*	Switching on/off precision stop	modal
G40*/ G41 / G42	Milling cutter path correction offset, clearing / left / right	modal
G43*/ G44	Axis correction off/on	modal
G45 G46*	Turning on/off	modal
GG47/G48/G49	Robot transformation off / Tool / workpiece coordinates	modal
G147	Transformation off	modal
G50/G51/G52	Spline interpolation	modal
G53* G153 G54G59	Machine zero point Zero point shift off Zero points	modal modal modal
G60*/ G61 / G62	Mirror imaging, off	modal

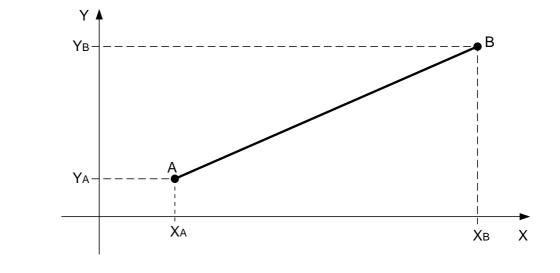
4. Traverse functions (continued)

Traverse functions		Effect
G63 / G64*	Switching on feed rate 100%	modal
G66	Switching off all offsets	block by block
G90* G91	Absolute dimension input Incremental dimension input	modal modal
G92	Zero point shift	modal
G94 G95	Feed in mm/min Feed in mm/r	modal modal
G96 G97	Constant cutting speed Number of revolution in 1/min	modal modal

4.1 G00 positioning at rapid traverse rate

Positioning at rapid traverse rate is called up by G00.

All axes can be traversed simultaneously as long as the machine tool is designed for this. Absolute and incremental dimension input are both possible.


G00 acts modally and can be overwritten by G01, G02, G03, G50, G51 and G52.

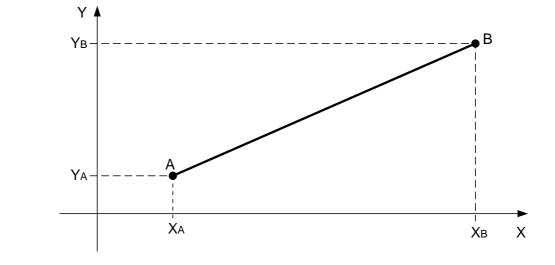
When traversing at rapid rate the programmed point is homed into via the shortest route. The axis with the longest programmed traverse distance is traversed at rapid rate and determines the positioning time. The speed of the other axes is chosen by the control system such that they reach their end point simultaneously with the fastest axis.

The feed rate override potentiometer is also operative during positioning at rapid rate.

Any feed rate stored in front of G00 again becomes operative after a rapid traverse through G01, G02, G03, G50, G51 and G52.

Example: positioning at rapid rate

Figure 4-1



4.2 G01 Linear interpolation

The programmed target position is homed into by G01 along a straight line. The programmed feed rate is the contouring rate.

G01 acts modally and can be overwritten by G00, G02 and G03. G01 is automatically preset at start of the program.

Example: linear interpolation

Figure 4-2

4.3 G02 / G03 Circular interpolation

When inputting G02 and G03, the programmed target position is homed into along a circle segment having a centre point determined by the interpolation parameters I, J and K and/or having a radius determined by R.

G02 signifies clockwise circular interpolation and G03 signifies counter-clockwise circular interpolation

The G02 / G03 functions act modally and overwrite each other mutually and can be cleared by G00, G01, G50, G51 and G52.

Circle centre point

The circle limit point and the interpolation parameters can be input simultaneously using either absolute or incremental dimensions. For complete circle programming the limit point is equal to the starting point.

Interpolation parameter

 address letter
 Circle centre point distance in direction

 I
 X axis

 J
 Y axis

 K
 Z axis

The speed at which the circle is started is proportional to the stored feed rate which can be adjusted between 0 and 120% by the feed rate override potentiometer.

4.3 G02 / G03 Circular interpolation (continued)

The interpolation parameters can be input in such a way that the deviation at A is less than or equal to 10 increments. If A is greater than 10 increments the program is still not shut down. In all cases the control system recalculates the circle centre point where R = (R1 + R2)/2.

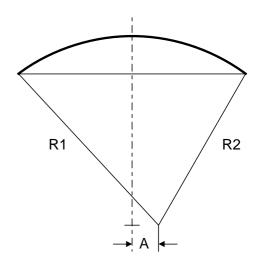


Figure 4-3

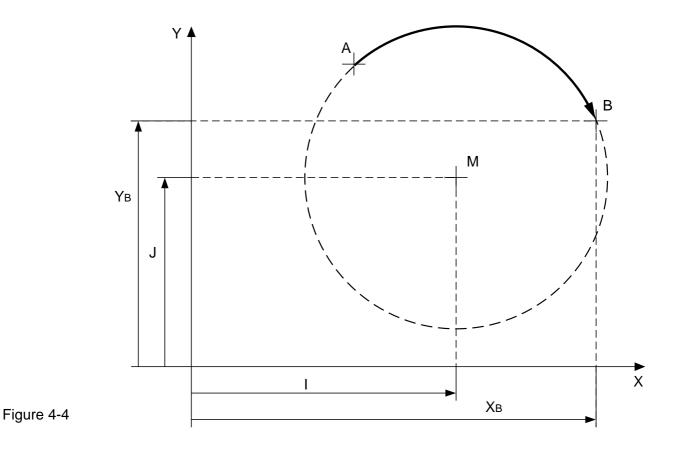
Three-dimensional circular interpolation

A programmed circle is three-dimensional driven off, if in a block 3 axes (X, Y, Z) and 3 circle center points (I, J, K) are indicated.

With programmed G02 is executed a long arc, G03 is executed a short arc.

The area levels G17, G18 and G19 are here without meaning.

4.3 G02 / G03 Circular interpolation (continued)


The main planes for the circular interpolation and tool correction offsets are selected by G17, G18 and G19 (see also 4.12 Plane selection).

Main plane	Parameters for circle centre point
XY ZX	IJ KI
YZ	JK

Example: clockwise circular interpolation

End point and circle centre point are programmed in absolute dimensions (G90).

- A = Starting point
- B = End point

4.3 G02 / G03 Circular interpolation (continued)

The circle end point can be input in absolute or incremental dimensions. Full circle programming is not permitted.

The smaller and larger angular paths are described by positive and negative radius information respectively.

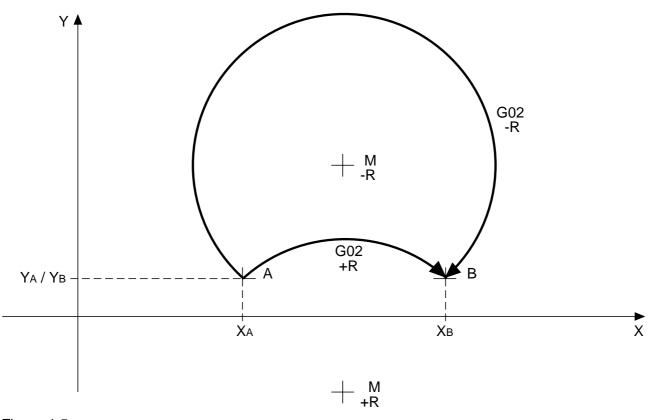
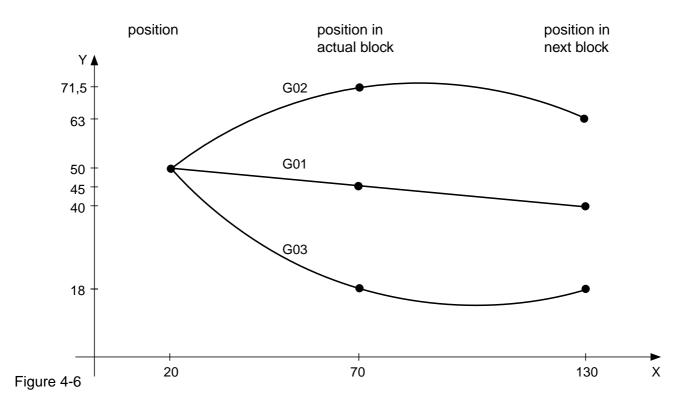


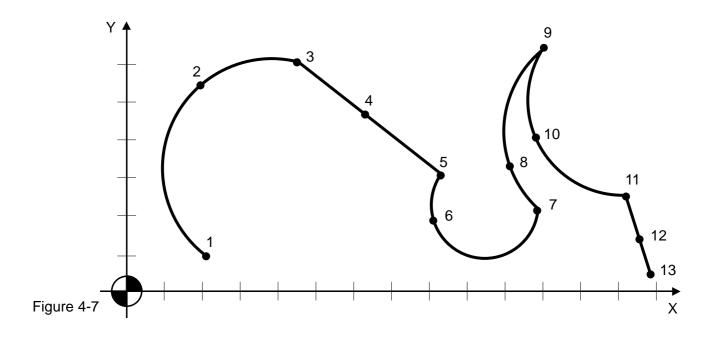
Figure 4-5


Radius R must be greater than or equal to the semi-chord AB/2 in order to give a centre point. If the R being input is less than the semi-chord, message 1407 is initiated and the control system selects an R = AB/2 without the program being shut down.

4.4 Automatic selection of linear and circular interpolation

G123 selects automatically after analysis of the position of three points G01 / G02 / G03:

2nd point	position programmed position in the actual block programmed position in the next block				
Example G1	123 -> G01				
N10	G01	X20	Y50	position	
N20	G123	X70	Y45	position in actual block	
N30		X130	Y40	position in next block	
Example G123 -> G02					
N10	G01	X20	Y50	position	
N20	G123	X70	Y71,5	position in actual block	
N30		X130	Y63	position in next block	
Example G123 -> G03					
N10	G01	X20	Y50	position	
N20	G123	X70	Y18	position in actual block	
N30		X130	Y18	position in next block	



bulo

4.4 Automatic selection of linear and circular interpolation

Program example

P2050					
N2					{ G123 free outline }
N10 G	649 G56 G0 F3000	X:0	Y:0	Z:2	
N20		X:21.1	Y:9.300	Z:-1	{ point 1 }
N30 G	6123 G1	X:19.6	Y:54.3		{ point 2 selection G02 }
N40		X:45.0	Y:61.0		{ point 3 }
N50 G	6123	X:63.0	Y:46.7		{ point 4 selection G01 }
N60		X:82.9	Y:30.5		{ point 5 }
N70 G	5123	X:81.2	Y:18.8		{ point 6 selection G03 }
N80		X:108.8	Y:21.6		{ point 7 }
N90 G	5123	X:101.0	Y:33.0		{ point 8 selection G02 }
N100		X:110.3	Y:64.4		{ point 9 }
N110 G	5123	X:108.2	Y:40.6		{ point 10 selection G03 }
N120		X:131.8	Y:25.5		{ point 11 }
N130 G	6123	X:135.7	Y:13.8		{ point 12 selection G01 }
N140		X:138.447	Y:4.4		{ point 13 }
N150				Z:2	
N160 M	130				

4.5 G04 Dwell

A dwell is called up by G04 and can be programmed between 0 and 999.999 s. The dwell must be input in the correct format, i.e. leading and trailing zeros and the decimal point should be input.

Example: G04.001.50 (1.5 s dwell)

The G04 function is only operative in the block in which it was written. G04 is operative after the traverse information and before the M functions subsequently active.

4.6 G05 / G06 / G07 driving direction of round axes

G5 driving direction positively, against clockwise direction.G6 driving direction negatively, in the clockwise direction.G7 driving direction neg. / pos., selection shortest path to the target position.

Example: G5 driving direction positively against clockwise direction

NC-Progra	am	Start	Target	Driving direction	Drive	Display
N10 G5	G90 C:90	C:0	90	pos.	90	90
N20 G5	G90 C:270	C:90	270	pos.	180	270
N30 G5	G90 C:35	C:270	35	pos.	125	35
N40 G5	G90 C:10	C:35	10	pos.	335	10
N50 G5	G91 C:30	C:10	40	pos.	30	40
N60 G5	G90 C:150	C:40	150	pos.	110	150
N70 G5	G91 C:-150	C:150	0	neg.	150	0

Example: G6 driving direction negatively in the clockwise direction

NC-Progra	im	Start	Target	Driving direction	Drive	Display
N10 G6	G90 C:90	C:0	90	neg.	270	90
N20 G6	G90 C:270	C:90	270	neg.	180	270
N30 G6	G90 C:35	C:270	35	neg.	235	35
N40 G6	G90 C:10	C:35	10	neg.	25	10
N50 G6	G91 C:30	C:10	40	pos.	30	40
N60 G6	G90 C:150	C:40	150	neg.	250	150
N70 G6	G91 C:-150	C:150	0	neg.	150	0

Example: G7 driving direction negatively / positively selection shortest path to the target position

NC-Progra	am	Start	Target	Driving direction	Drive	Display
N10 G7	G90 C:90	C:0	90	pos.	90	90
N20 G7	G90 C:270	C:90	270	pos.	180	270
N30 G7	G90 C:35	C:270	35	pos.	125	35
N40 G7	G90 C:10	C:35	10	neg.	25	10
N50 G7	G91 C:30	C:10	40	pos.	30	40
N60 G7	G90 C:150	C:40	150	pos.	110	150
N70 G7	G91 C:-150	C:150	0	neg.	150	0

Note: With incremental the technique the functions G5/G6/G7 are ineffective. The driving direction certainly by the sign.

4.7 G08 / G09 Precision stop block-by-block

G08 precision stop, block-by-block, On G08 precision stop, block-by-block, Off

G08 initiates a precision stop at the end of a block.

The function overwrites a programmed G29 block by block. The precision stop is automatically set block by block with G00 and G81 to G85.

G09 overwrites a precision stop programmed with G28 block by block

4.8 G10 / G11 Polar coordinate system

G10 Polar coordinate system on G11 Polar coordinate system off

The function G10 is used to activate the programming of target points in polar coordinates. The function G11 deactivates this function. Both functions act modally.

The coordinates programmed in the block with G10 define the pole, but not the travel of the axes (this is only valid for the two coordinates of the interpolation plane defined with G17...G19). If the coordinates are not programmed, the existing pole is kept.

At the program end or if the program is interrupted, the programmed pole as well as the polar radius (x) and polar angle (c) are cleared. Polar radius (x) and polar angle (c) act modally.

The polar coordinate system plane corresponds to the interpolation plane defined with G17...G19. The polar radius is always interpreted as a positive value!

Polar radius and polar angle can be corrected with G44.

4.8 G10 / G11 Polar coordinates (continued)

Definition of the poles in different interpolation planes

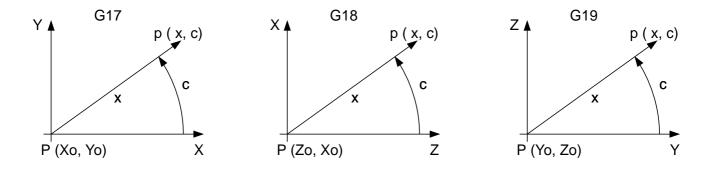
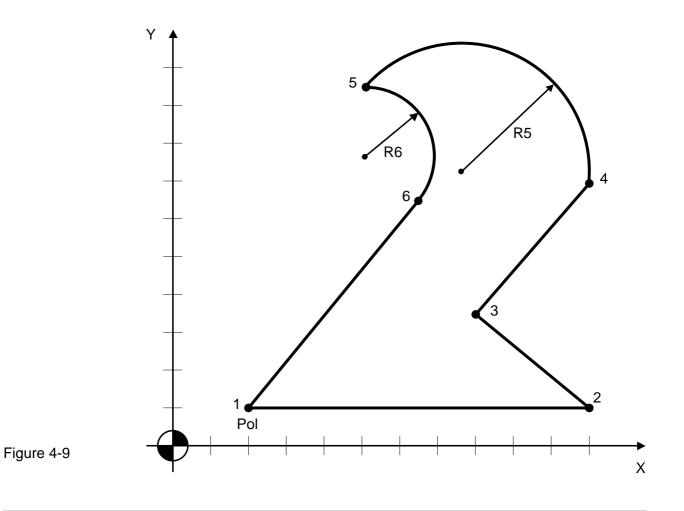


Figure 4-8

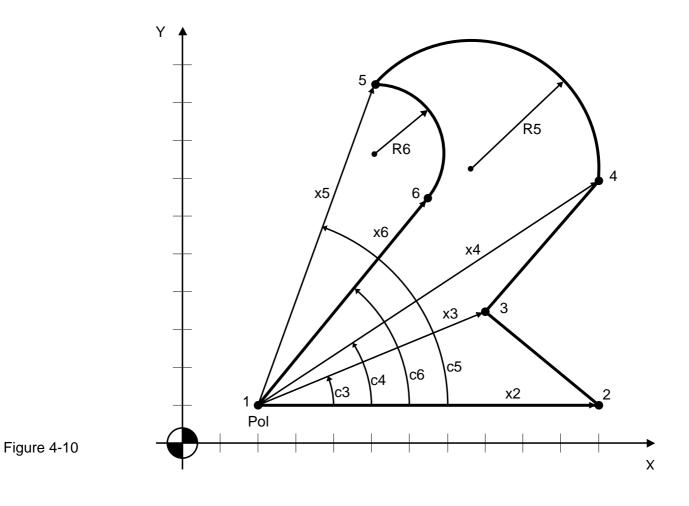
Parameters used for polar coordinate system


- G10 Activating the polar coordinate input position with radius vector x and polar angle c G11 Deactivating the polar coordinates
- G17 XY plane pole P() is in plane XY, the X axis is the polar axis
- G18 ZX plane pole P() is in plane ZX, the Z axis is the polar axis
- G19 YZ plane pole P() is in plane YZ, the Y axis is the polar axis
- q150 Polar coordinate system: identification for radius vector (e.g. 'x') Input of the ASCII-code Default: 'x'
- q151 Polar coordinate system: identification for polar angle (e.g. 'c') Input of the ASCII-code Default: 'c'

4.8 G10 / G11 Polar coordinates (continued)

Program example: Coordinates in X / Y

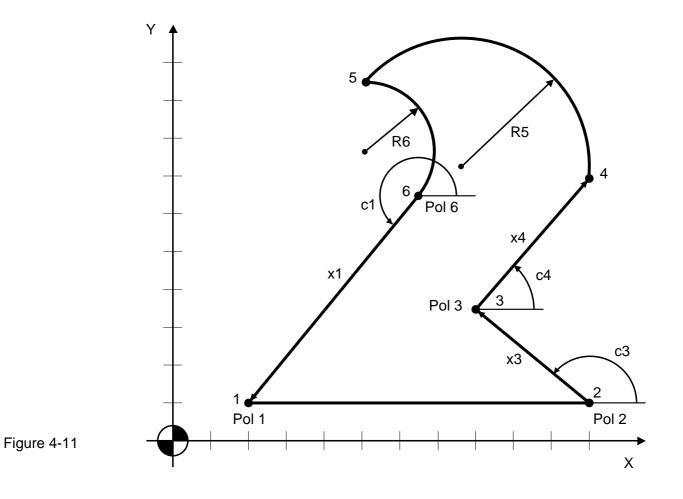
P656								
N05	G55 G49	G00	F3000	T1	M16			
N10			X:0		Y:0	Z:	:2	{ point 1 }
N20		G01				Z:	:-2	
N30			X:90		Y:0			{ point 2 }
N40			X:60		Y:25			{ point 3 }
N50			X:90		Y:60			{ point 4 }
N60		G03	X:30		Y:85	R	:34	{ point 5 }
N70		G02	X:45		Y:55	R	:18	{ point 6 }
N80		G01	X:0		Y:0			{ point 1 }
N90						Z:	:2	
N100	M30							



4.8 G10 / G11 Polar coordinates (continued)

Program example: Point of pole is the null point X:0 / Y:0

P657							
N05	G55 G49	G00	F3000	T1	M16		
N10			X:0		Y:0	Z:2	{ point 1 }
N20		G01				Z:-2	
N30	G10		X:0		Y:0		{ point 1 pole set }
N40			x:90		c:0		{ point 2 }
N50			x:65		c:22.619		{ point 3 }
N60			x:108	3.166	c:33.690		{ point 4 }
N70		G03	x:90.	138	c:70.559	R:34	{ point 5 }
N80		G02	x:71.	063	c:50.710	R:18	{ point 6 }
N90		G01	x:0		c:0		{ point 1 }
N100	G11					Z:2	
N110	M30						



4.8 G10 / G11 Polar coordinates (continued)

Program example: Point of pole are thr points 2, 3 und 6

P659							
N05	G55 G49	G00	F3000	T1	M16		
N10			X:0		Y:0	Z:2	{ point 1 }
N20		G01				Z:-2	
N30			X:0		Y:0		{ point 2 }
N40	G10		X:90		Y:0		{ point 2 pole set }
N50			x:39.	05	c:140.194		{ point 3 }
N60			X:60		Y:25		{ point 3 pole set }
N70			x:46.	09	c:49:398		{ point 4 }
N80	G11	G03	X:30		Y:85	R:34	{ point 5 pole reset }
N90		G02	X:45		Y:55	R:18	{ point 6 }
N100	G10		X:45		Y:55		{ point 6 pole set }
N110		G01	x:71.	062	c:230.710		{ point 1 }
N120	G11					Z:2	{ point 1 pole reset }
N130	M30						

4.9 G12 Rapid graphical programming environment

Contour sections can be linked by of straight lines and circles.

This function acts block-by-block.

Parameter	Leg	Radius
	P70	P71

Rapid programming is only carried out with blocks in which the distance to be traversed is unequal to zero (differences in distances are unequal to zero for straight lines, radius is not equal to zero for circles).

Blocks with distances equal to zero are carried out at the start of the chamfer or circle segment.

Linear programming

A chamfer can be inserted at the intersection of two straight lines.

The length of the chamfer is given by P70 and the intersection point SP is programmed in the selected interpolation plane.

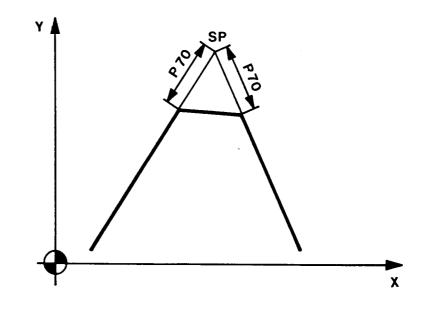
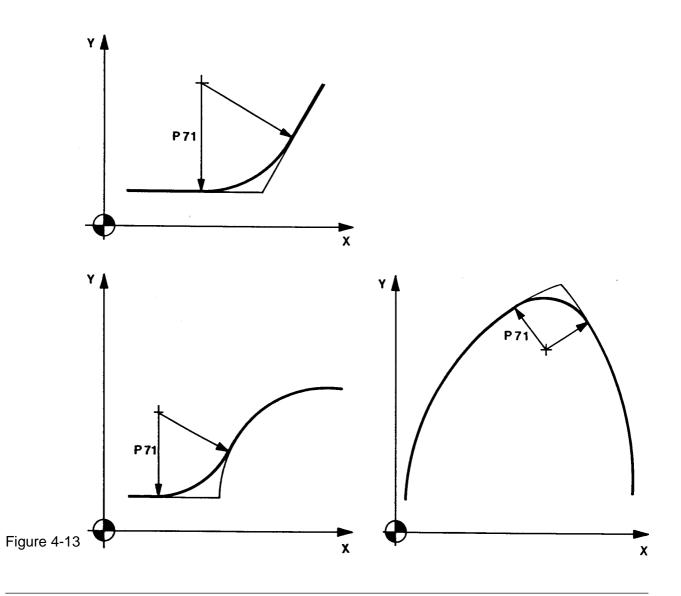


Figure 4-12

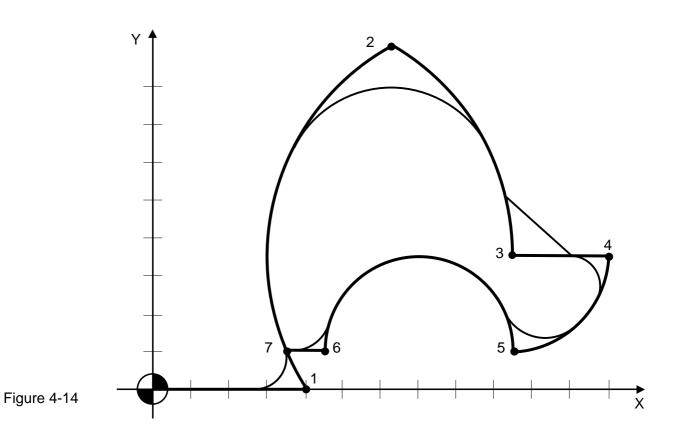

4.9 G12 Rapid graphical programming environment (continued)

Radius programming

A circle segment can be inserted at the intersection point of

- two straight lines,
- one straight line and one circle,
- two circles.

The radius of the circle is given by P71 and the intersection point SP is programmed in the selected interpolation plane.



4.9 G12 Rapid graphical programming environment (continued)

Program example: Outline path short programming with radius and leg

P391										
N10	G55 G29	G48	G00 F2	2000 T1	M16	X0	Y0	Z2		
N20	G01							Z:-1		
N30	G12		P71:8			X:40	Y:0		{ point 1	radius }
N40	G12 G02	R65	P71:28			X62.5	Y:91		{ point 2	radius }
N50	G12 G02	R65	P71:15			X95	Y:35		{ point 3	leg }
N60	G12 G01		P71:8			X120	Y:35		{ point 4	radius }
N70	G12 G02		P71:12	195	J35	X95	Y:10		{ point 5	radius }
N80	G12 G03		P71:10	170	J10	X45	Y:10		{ point 6	radius }
N90	G01					X34.5	Y:10		{ point 7	radius }
N100			G00					Z:2		
N110	M30									

4.10 G13 / G14 tangential axis

G13 tangential axis off G14 tangential axis on

G13 switches the tangential axis off.

G14 switches the tangential axis on.

With this function it is possible to control a round axis so that it is always in a certain position (tangential) to the path of the main axes.

For example for band saws, glass cutting, moist collectors.

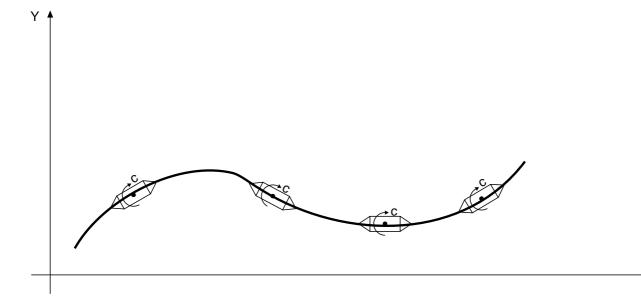


Figure 4-15

Х

4.11 G15 / G16 Polar transformation

G15 Polar transformation off G16 Polar transformation on

G15 switches the polar transformation off.

G16 switches the polar transformation on.

The polar transformation is applied for example for programming of uneven parts on a grinding machine or lathe with polar coordinate system. Usually the workpiece can be described more easily in the cartesian coordinate system. With the polar transformation G16 the control converts the cartesian coordinates (X/Y/Z) into polar coordinates (radius vector x and polar angle c). This method is very advantageous, because it requires less time for contour featuring.

Definition of the polar coordinate system

With the polar coordinates each point of the coordinates are determined by the two values radius vector 'x' and polar angle 'c'.

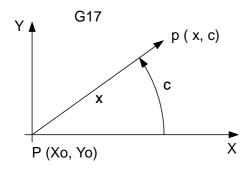


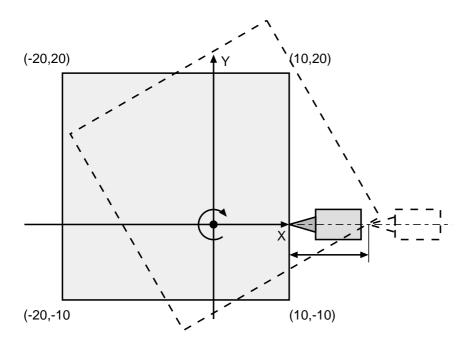
Figure 4-16 Polar coordinates with G 17 (XY - plane)

The radius vector x is the distance of point p(x,c) to the origin P(Xo, Yo).

The polar angle c is between the X-axis and the connecting straight line from the origin P(Xo, Yo) to point p(x,c).

The X - axis is marked as polar axis and the origin P(Xo,Yo) as pole. The polar angle is positive, if it is measured from the pole axis X counter-clockwise direction. The angle is negative in clockwise direction.

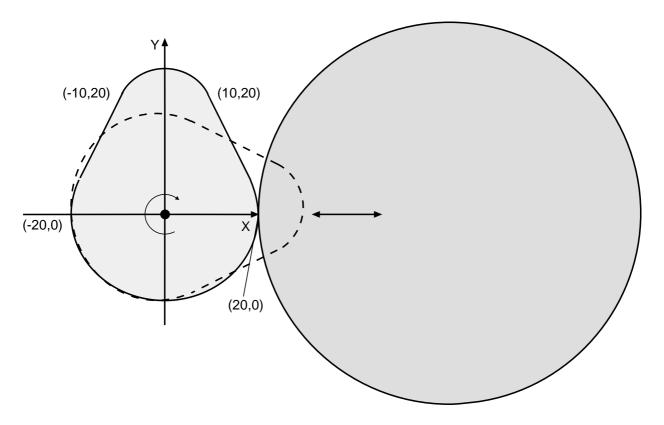
4.11 G15 / G16 Polar transformation (continued)


Utilized parameter for polar coordinate system

G15 G16	Selecting the polar coordinate transformation Call up of the polar coordinate transformation, input position with X, Y					
G17 G18 G19	XY plane pole P() lies in XY Plane, X axis is polar axis ZX Plane pole P() lies in ZX Plane, Z axis is polar axis YZ Plane pole P() lies in YZ Plane, Y axis is polar axis					
P11820	Polar coordinate axis (physical axis number) e.g. Byte 3, 2, 1: the first 2 axes (x, y) 00 02 01 Hex Byte 4 : change of direction (Bit 2, 1)					
P11821	Radius vector offset (ro) for polar coordinate transformation [mm]					
P11822	Polar angle offset (wo) for polar coordinate transformation [degrees]					
P11823	Pole offset (po) for polar coordinate transformation [mm]					

4.11 G15 / G16 Polar transformation (continued)

Example: Polar transformation G16 for square contour


Figure 4-17 Square contour

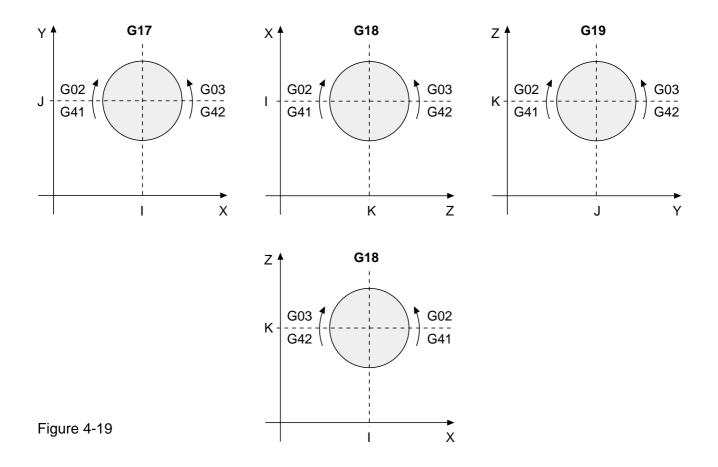
N10 G17 G1 F1000	;	Definition of coordinate plane
 N150 G16 X10 Y0	, , ,	Call up polar transformation and X,Y are transformed accord. equation 2 into polar coorinates here: $Xo = Yo = 0$;
N160 X10 Y 20	;	Position X= 10 and Y= 20 are transformed into polar coordinates. Approach to transformed position
N170 X - 20 Y 20	, , ,	X = -20 and $Y = 20$ are transformed into polar coordinates. Approach to transformed position
N180 X - 20 Y-10	, , ,	X = -20 and $Y = -10$ are transformed into polar coordinates. Approach to transformed position
N190 X10 Y-10	, , ,	X= 10 and $Y= -10$ are transformed into polar coordinates. Approach to transformed position
N200 X10 Y 0 G15	, , ,	X= 10 and $Y= 0$ are transformed into polar coordinates. Approach to transformed position Switch off polar transformation.
N220	,	·
N230 M30	;	Program end

4.11 G15 / G16 Polar transformation (continued)

Example: Polar transformation G16 for cam contour

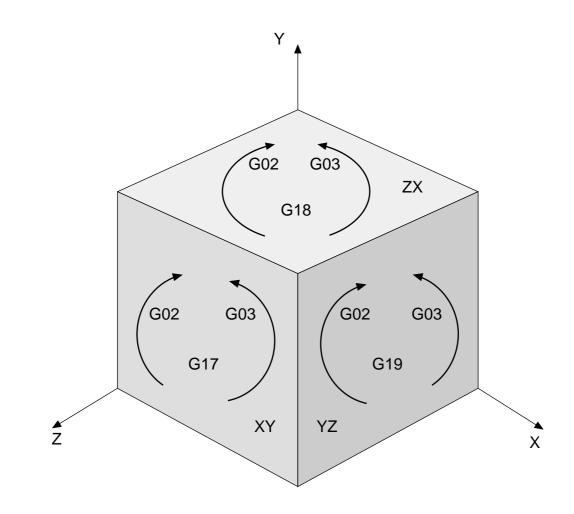
Figure 4-14	Cam contour
-------------	-------------

N10 G17 G1 F1000	.,	Definition coordinate plane
 N150 G16 X20 Y0	; ;	Call up polar transformation and X,Y are transformed accord. equation 2 into polar coorinates here: Xo = Yo = 0;
N160 X10 Y 20	, , ,	Position $X = 10$ and $Y = 20$ are transformed into polar coordinates. Approach to transformed position
N170 G2 X -10 Y 20 R11	, , ,	X = -10 and $Y = 20$ are transformed into polar coordinates. Approach to G2 until transformed pos. N180
G1 X -20 Y0	, ,	X= -20 and Y = 0 are transformed into polar coordinates Approach to transformed position
N190 G2 X20 Y0 R22	, , ,	X=20 and $Y=0$ are transformed into polar coordinates Approach to G2 until transformed position
N200 G15 N220	, , ,	Switch off polar transformation.
N230 M30	;	Program end


4.12 G17 / G18 / G19 Plane selection

The main planes for circle interpolation and tool correction offsets are selected using G17, G18 and G19.

Traverse functions	Main plane	Parameters for circle centre point
G17	XY	IJ
G18	ZX	KI
G19	YZ	JK


These functions act modally and overwrite each other mutually. The plane preset is controlled by the PLC parameter "WZ" tool axis.

The tool correction offset takes place in the given interpolation plane. The correction offset should be cancelled using G40 before changing the interpolation plane.

4.12 G17 / G18 / G19 Plane selection (continued)

Figure 4-20

4.13 G28 / G29 Precision stop modal

G28 Switching on modal precision stop

G28 initiates a precision stop at the end of a block. The tool traverses to the end point programmed in the block and stops.

Subsequently it traverses to the end point programmed in the next block and stops again.

The function acts modally and can be cleared by G29.

G29 Switching off modal precision stop

G29 switches off a precision stop programmed with G28.

The function acts modally and can be cleared by G28.

G29 is automatically set when the program starts.

4.14 G40 / G41 / G42 Milling cutter path correction offsets

G40 Clearing milling cutter path correction offsets

The milling cutter path correction offset programmed using G41 or G42 is cleared using G40.

G40 acts modally and can be cleared by G41 and G42. G40 is automatically set when the program starts.

G41 / G42 Actuating milling cutter path correction offset

A milling cutter path correction offset can be switched on using G41 and G42.

G41 effects a correction to the left of the programmed path. G42 effects a correction to the right of the programmed path.

The reference direction is in the feed direction in each case.

The functions act modally, overwrite each other mutually and can be cleared by G40.

The feed rate is proportional to the milling cutter centre point path when the tool correction offset is switched on.

Further details on this subject appear in the section "Tool correction offset".

4.15 G43 / G44 Axis correction

With G43 / G44 an axis correction can be programmed.

G43 axis correction off G44 axis correction on

The programmed traverse informations in the block with G44 determine the axis correction, whereby no traverse is driven. These corrections remain modally.

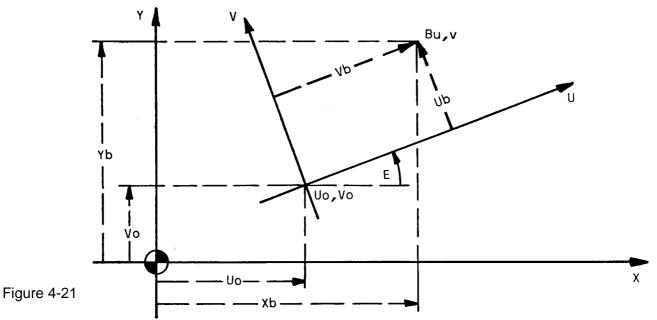
At program end or program abort these corrections are cleared, or switched off with G43. A programmed G44 correction is a component, which is added on all further traverse information.

With G44 polar angles and polar radius can also be corrected.

Input: e.g.:

N100 G44 X10 Y20 Z30 axes do not drive !

N120 G01 F1000 X100 Y100 Z100 axes drive to X: 110, Y: 120; Z: 130


N130 G43

4.16 G45 / G46 Turning of coordinates

The "Turn" function initiates the turning of a coordinate pair about a given angle E. The traverse function G45 switches turning on, G46 switches the function off. G45 and G46 act modally.

G45 / G46 Geometric definition turning

X, Y Machine coordinate system

U, V Coordinate axes of the turned coordinate system

- E Angle about which the machine system X axis is to be turned in the direction of the machine system Y axis in order to retain the UV coordinate system orientation. Angle E is positive if measured counter-clockwise to the X axis and negative in the clockwise direction.
- Uo, Vo Original UV coordinate system coordinates, referred to the machine XY coordinate system zero point.
- Ub, Vb Point B coordinates in UV coordinate system.
- Xb, Yb Point B coordinates in XY coordinate system, referred to the effective shift (NP and G92).

Converting the UV system coordinates into those of the XY system

Xb = (U.cosE - V.sinE) + UoYb = (U.sinE + V.cosE) + Vo

4.16 G45 / G46 Turning of coordinates (continued)

Programming the coordinate origins U0, V0 (referred to the machine system zero point) and the turning angle E take place via parameters.

Parameter	Characteristic	Significance
P160	Uo	UV system original coordinate
P161	Vo	UV system original coordinate
P163	E	Turning angle

The parameters act modally.

The parameters P160, P161 and the reference axis for the turning angle are dependent on the plane set.

Plane set	P160	P161	Reference axis for turning angle
G17 (XY)	Хо	Yo	X axis
G18 (ZX)	Zo	Хо	Z axis
G19 (YZ)	Yo	Zo	Y axis

Shifts with additive effect

In addition to the adjustment values P160, P161, P163, shifts can be programmed which act additively with respect to the direction.

Parameter	Characteristic	Significance
P165	U	Shift in U
P166	V	Shift in V
P168	E	Turning angle incrementation

When one of these parameters is called up, it's value is added to the former value of the corresponding shift. The value obtained in this way acts modally. The original parameters are retained.

Cancellation of the additive shifts is by re-calling up the adjustment values P160, P161 or P163 (or by switching G45 off with G46).

The additive shifts are plane-dependent, as are the adjustment values.

4.16 G45 / G46 Turning of coordinates (continued)

Mirror imaging of the turned coordinate system

The mirror functions G61 and G62 are referred to the UV coordinate system: G61 mirror images the U axis G62 mirror images the V axis

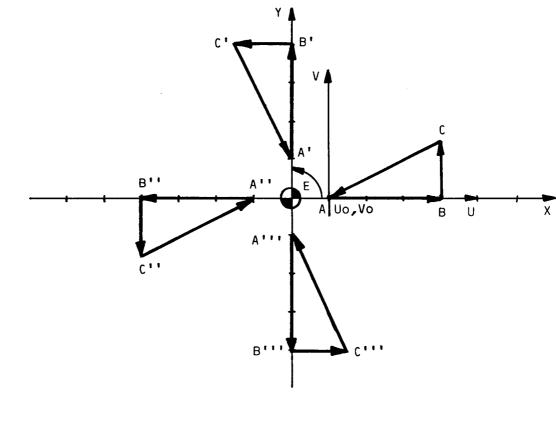
The mirror imaged coordinates are expressed in the machine system XY in the following manner: Xb = -(U.cosE - V.sinE) + UoYb = -(U.sinE + V.cosE) + Vo

The effect on G92

The shifts programmed using G92 are carried out.

The effect on G66 on the turning function

G66 initiates the block-by-block switching off (G46) of turning G45.


Turning the circle centre point coordinates I, J, K

Turning the circle centre point coordinates I, J, K takes place according to the turning of coordinates as described above.

4.16 G45 / G46 Turning of coordinates (continued)

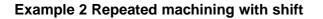
Example 1 Repeated machining with turning

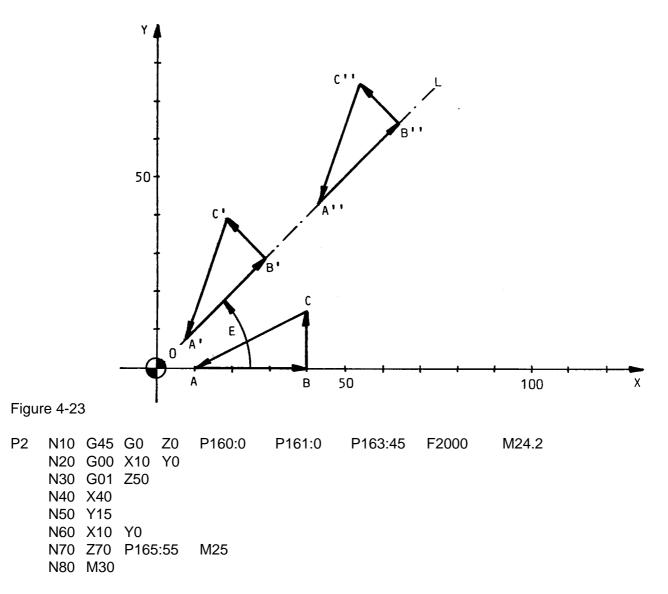
P1 N10 G45 G00 G54 Z2 P160:0 P161:0 P163:0 F2000 M24.4 N20 G00 X10 Y0 N30 G01 Z-1,5 N40 X40 N50 Y15 N60 X10 Y0 N70 Z2 P168:90 M25 N80 M30

The triangular shape ABC is to be machined four times with appropriate orientation of the +X, +Y, - X, -Y coordinate axes.

The machining sequence on the triangle is: 1st. Traverse A to B 2nd. Traverse B to C 3rd. Traverse C to A

Figure 4-22


4.16 G45 / G46 Turning of coordinates (continued)


Program run, example 1

Block 10	Switching on the coordinate turning function (G45)
	Input set-up data U0=10 (P160) Vo=0 (P161) E=0 (P163) Uo, Vo coincide with point A Approach to Z safety dimension, Loop input
Block 20	Positioning to point $A = Uo$, Vo
Block 30	Tool axis in-feed to machining depth
Block 40	Machining along line AB
Block 50	Machining along line BC
Block 60	Machining along line CA
Block 70	Traversing tool axis away for positioning, incrementing the turning angle to +90 deg., skip back to Block 20
Block 20	Positioning to point "A"
Block 30	In-feed to machining depth
Block 70	
Block 20	Point "A" Machining, x-orientated
Block 70	
Block 20	Point "A" Machining, y-orientated
Block 70	
Block 80	End of machining operations
The final r	nachine position is at point "A".

4.16 G45 / G46 Turning of coordinates (continued)

The basic triangular shape ABC is to be machined twice along line OL. Line OL makes an angle E to the axis. The distance between the two triangles A', B', C' and A", B", C" is 55mm (distance A'-A").

The machining sequence on the triangle is:

1st. Traverse A to B

2nd. Traverse B to C

3rd. Traverse C to A

4.16 G45 / G46 Turning of coordinates (continued)

Program run, example 2

Block 10	Switching the coordinate turning function on (G45)		
	Set-up data input Uo=10 (P160) Vo=0 (P161) E=45 (P163)		
	Approach to Z safety margin, Loop input		
Block 20	Positioning to point A'		
Block 30	Tool axis in-feed to machining depth		
Block 40	Machining along line A' - B'		
Block 50	Machining along line B' - C'		
Block 60	Machining along line C' - A'		
Block 70	tool axis retraction for positioning, shifting the Uo-value P165:55, skip back to Block 20		
Block 20	Positioning to point A"		
Block 30	Tool axis in-feed to machining depth		
Block 40	Machining along line A" - B"		
Block 50	Machining along line B" - C"		
Block 60	Machining along line C" - A"		
Block 70	Tool axis retraction		
Block 80	End of program		

4.16 G45 / G46 Turning of coordinates (continued)

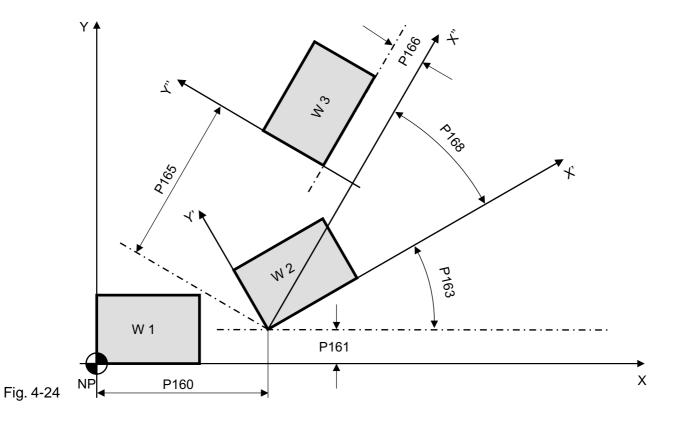
General data for the examples 3, 4 and 5

Program rectangle figure process

P452 N10 G0 F3000 Z1.5 N20 G1 G91 X0 Y0 Z-2.5 N30 X30 N40 Y20 N50 X-30 N60 Y-20 N70 Z2.5 N80 G90 M02 #

Parameter P8859

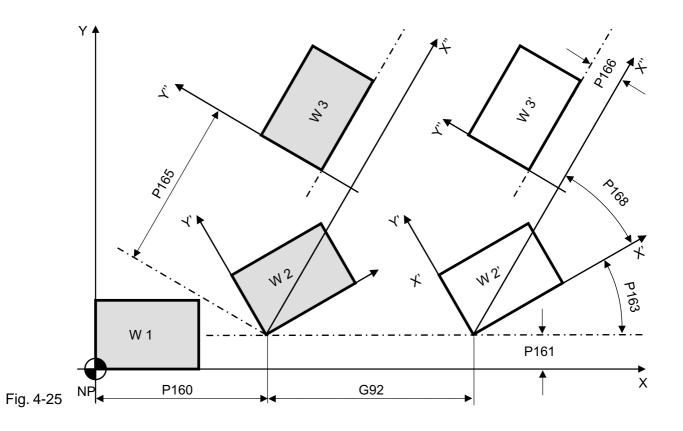
the parameter P8859 influences the order of rotation and shift.


P8859:0	with G92, G147, G48 and G49	first turninged, then shifted
P8859:1	with G92, G48 and G49, NP:A>0	first turninged, then shifted
P8859:2	with G92, G147, G48 and G49	first shifted, then turninged
P8859:3	with G92, G48 and G49, NP:A>0	first shifted, then turninged

4.16 G45 / G46 Turning of coordinates (continued)

Example 3 rectangle figure turn with different brackets, absolutely and incremental

P451			
N10	T1 M16 G0		
N20	G55 G49 G60 G0 F3000	X0 Y0 Z2 M28.452	{W 1}
N30 G45	P160:50 P161:10 P163:30	X0 Y0 Z2 M28.452	{W 2 turning}
N40	P165:50 P166:10 P168:30	X0 Y0 Z2 M28.452	{W 3 incremental turning}
N50 G46	G90	X0 Y0 Z5	
N60	M30		
#			

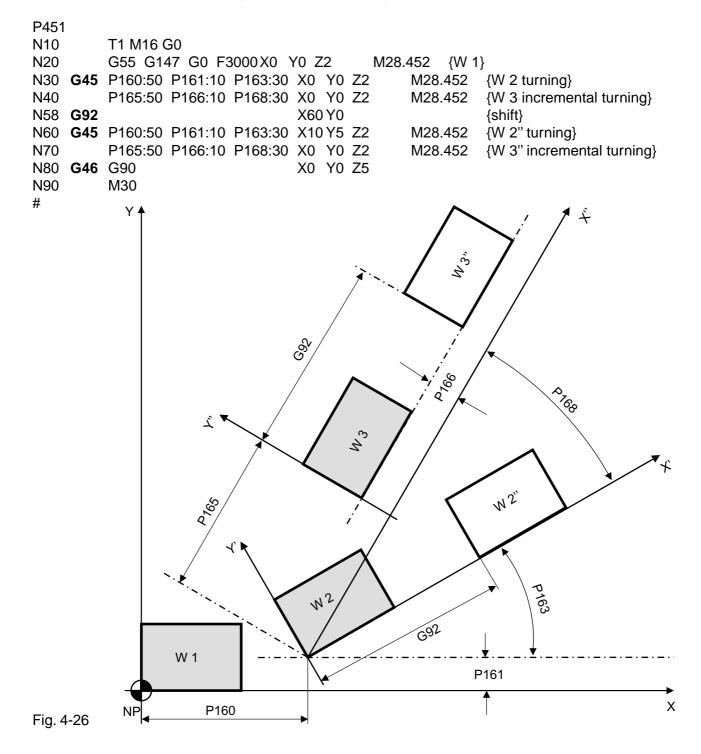


4.16 G45 / G46 Turning of coordinates (continued)

Example 4 rectangle figure shift and turn

P8859:2 first shift by G92 and then turn by G45

P451		
N10		T1 M16 G0
N20		G55 G147 G0 F3000X0 Y0 Z2 M28.452 {W 1}
N30	G45	P160:50 P161:10 P163:30 X0 Y0 Z2 M28.452 {W 2 turning}
N40		P165:50 P166:10 P168:30 X0 Y0 Z2 M28.452 {W 3 incremental turning}
N50	G92	X60 Y0 {shift}
N60	G45	P160:50 P161:10 P163:30 X10 Y5 Z2 M28.452 {W 2' turning}
N70		P165:50 P166:10 P168:30 X0 Y0 Z2 M28.452 {W 3' incremental turning}
N80	G46	G90 X0 Y0 Z5
N90		M30
#		



4.16 G45 / G46 Turning of coordinates (continued)

Example 5 rectangle figure turn with different brackets and shift by G92

P8859:0 first turn by G45 and then shift by G92

4.17 G47 / G48 / G49 / 147 Robot transformation

It is advantageous for different applications, if the user can select the movements in different mode of coordinates when installing the machine (e.g. machine tool or handling system). With the BWO-ROBOT-system three modes of coordinates can be chosen.

Machine coordinates G47

The general and most frequent case is, that the movement is referred to a machine coordinate system, Thereby the coordinate axes and an origin of coordinates are determined. The cartesian coordinates are used.

Transformation off by G147

G147 turns out the transformation. The transformation is preset at startup.

The zero points G54 to G59, the tool length and tool length offsets are active.

The coordinate type zero (0) or deleted (--) corresponds to G147 (in manual mode)

Tool coordinates G48

If the movement is referred to the tool or a grip, infeed movements can be executed very simple for machining - or assembling tasks. In this case, the coordinates are oriented at the tool peak.

Workpiece coordinates G49

Programming is facilitated for many machining functions, if the movement is referred to a coordinate system oriented at the workpiece.

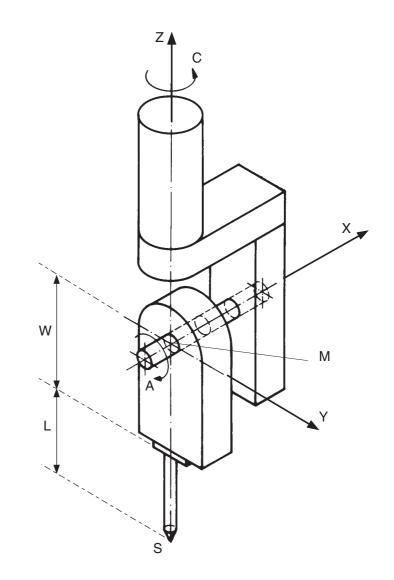
Switching between the above named modes of coordinates (G47 / G48 / G49) is an essential help for the user at programming with Teach-in, because e.g. for establishing a NC-program the contours of a workpiece only have to be touched and stored (teached). If equal workpieces are processed in different positions, the same NC program can be used through a single transformation of the coordinates.

4.17 G47 / G48 / G49 / 147 Robot transformation (continued)

The coordinate system demands the following axis configuration:

The A - axis turns around an axis parallel to the X - axis.

The C - axis turns around an axis parallel to the Z - axis.


The spindle axis stands vertically on the A - axis.

The intersection of all three rotation axes is the center point M.

The positive rotating direction of C is seen from positive Z-direction in counter-clockwise direction.

The positive rotating direction of A is seen from positive X - direction in counter-clockwise direction. The reference point offsets are to be determined, so that in position A = C = 0 the tool system is axis

parrallel to the basic coordinate system.

A. C	Angle
M	Center point
W	Tool loader dimension
L	Tool length
S	Tool peak

Figure 4-27 Axis configuration

4.17 G47 / G48 / G49 / 147 Robot transformation (continued)

Machine coordinate system (G47)

At the machine coordinate system the coordinates refer to the machine origin. Thereby the machine axes are defined in cartesian coordinates. The axis movements orientate to the axis coordinates.

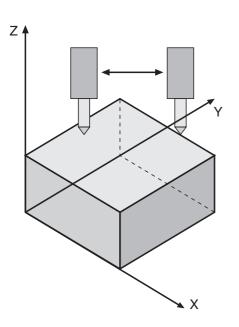
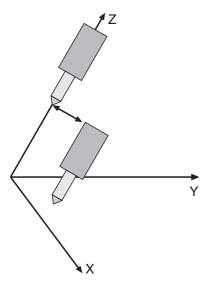


Figure 4-28 Axis movements in the machine coordinate system

In G47, the zero points G54 to G59, the tool length and tool length correction not be charged.


Tool cordinate system (G48)

At the tool coordinate system the coordinates refer to the tool. The cartesian coordinate system is only used with a firm unit of length (e.g. mm).

If the tool system is arbitrarily shifted and rotated through the NC program, the system must fulfill the following conditions.

The coordinate source is the point, around which the tool is turned, if its orientation is changed. This point is named tool peak.

At rotating tools the Z-axis is the rotation-axis and indicates from the tool peak into the direction of the chuck.

- The Robot displacement parameters P11802 to P11807,

- the zero points G54 to G59 and
- the tool length and tool length correction

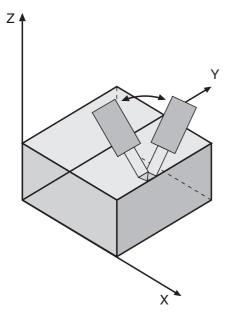
are active.

Figure 4-29 Axes movements in too coordinate system

The speed of the tool peak is interpreted as actual working feed.

When activating the tool dimensions the control shifts the tool coordinate system in the Z-direction for an amount corresponding to the tool length.

If the X -, Y - or Z- traverse direction is selected, the X -, Y - or Z - axis traverse according to the position of the rotating angle of the C-axis and the position of the tumbler angle of the A-axis, so that the tool stands always vertically on the X- Y- plane.



Workpiece coordinate system (G49)

At the workpiece coordinate system the coordinates refer to the workpiece. Only the cartesian coordinate system with a firm unit of length (e.g. mm) is used. The advantage of the workpiece system is, that it can be shifted and turned arbitrarily with the NC program.

For each point a coordinate vector can be allocated in reference to the workpiece system, for example:

- If for the linear axis the X -, Y or Z- traverse direction is selected, the X -, Y or Z movement is parallel to the axes coordinates (independently of the position of the rotating angle of the C-axis and the tumbler angle of the A-axis).
- If only axis C is traversed, X and Y are relocated so that the tool peak is always at the same point. The X and Y axis describe a circle around this point. The orbit proceeds vertically under the center point.
- If axis A is traversed, additionally the Z axis is moved in plus or minus direction according to the tumbler angle position of A.

- The Robot displacement parameters P11802 to P11807,
 - the zero points G54 to G59 and

- the tool length and tool length correction

are active.

Figure 4-30 Axes movements in workpiece coordinate system

Appearing coordinate transformation when switching over between G47, G48, G49 determines the position and orientation of the tool relative to the workpiece reversable definitely.

Offset functions

Sometimes it is necessary, that at the construction of the machine the point of balance does not correspond to the center point M. In this case, a function for compensating this deviation is necessary.

The system offers three offset functions. By using this function, the mechanical offset is corrected automatically.

Offset in X - direction

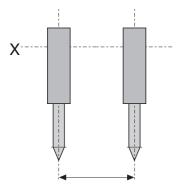


Figure 4-31 Offset in X - direction

Paramter P11802 is offset value [mm].

Offset in Y - direction

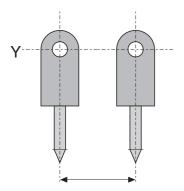


Figure 4-32 Offset in Y - direction

Paramter P11803 is offset value [mm].

Offset in Z - direction

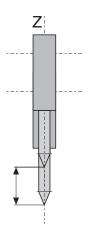


Figure 4-33 Offset in Z - direction

Paramter P11804 is offset value [mm].

Tool carrier with oblique angled axes

The configuration of the tool carrier with oblique angled axes (in zero position) is shown in figure 4.24. The A - axis turns around an axis, which does not stand vertically on the rotation axis Z. That means, that the tilt is not parallel to the X - axis. The paramter P11806 is the tilt angle.

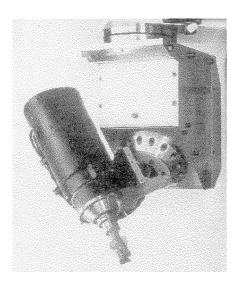


Figure 4-34 Tool carrier with oblique angled axes

Value areas and handling

The parameter values used are limited in the following areas.

For the parameters P11802, P11804 and P11806 positive or negative values are possible. The amount of P11806 must be smaller than 180 degrees. If P11806 is = 0, the presetting is 90 degrees, namely $\xi = 90$ [degree] If $\xi = 90$ [degree], $\alpha - \alpha 12 = 0$, $\beta - \beta 12 = 0$ and $\theta = 0$

The amount (β) is dependent on the areas of ξ .

P8759	Coordinate mode in Manual0Transformation off15Polar transformation off16Polar transformation on47Robot transformaton off48Tool coordinate system	
	49 Workpiece coordinate system	
P11800	Robot linear axes(physical axis number)e.g. the first 3 axes (X, Y, Z)Byte 3,2,103 02 01 HexByte 4reverse (Bit 3, 2, 1)	
P11801	Robot rotation axes(physical axis number)e.g. the 4th and 5th axis (A, C)Byte 3, 2, 100 05 04 HexByte 4reverse (Bit 3, 2, 1)	
P11802	Offset X, rotation axis - tool axis	[mm]
P11803	Offset Y, rotation axis - tilt	[mm]
P11804	Offset Z, length of tool carrier	[mm]
P11805	Angle between tilt - tool axis	[degree]
P11806	Angle between rotation axis - tilt	[degree]
P11807	Angle where the tool shows downwards	[degree]

Zero points

The Robot system is given through a block of coordinates, which indicates its position in reference to the machine system. The zero point system G54 to G59 is analogously valid in the Robot system. The zero point indicates the position in reference to the machine system, i.e. the position of the tool is in reference to the workpiece. It can be filed in a zero point memory and is activated by calling up G54 to G59.

The functions G54 to G59 overwrite mutually. Besides they overwrite a shift effective through G92.

Zero point shift

The Robot system can be shifted and turned again in the NC program. The position of the shifted system relative to the old one is given through a block of coordinates. Calling up results through the zero point shift G92. This position of G92 is the reference to the actual zero point coordinates. In manual mode this zero point shift is not disposable.

The position of the tool in the machine system is given through 3 blocks of coordinates

- Zero point coordinates
- Zero point shift
- Coordinates of the position

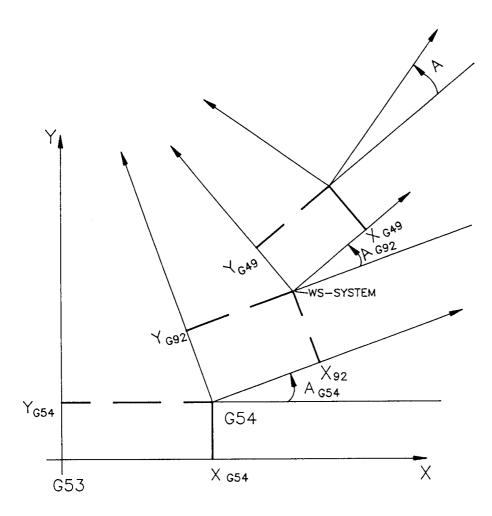
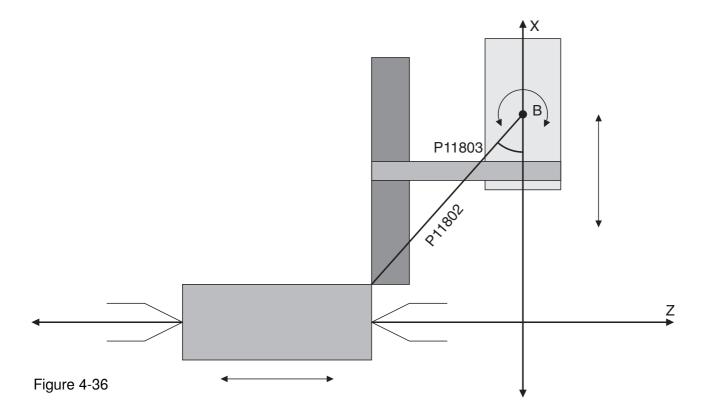


Figure 4-35 Zero point shift


Denomination of the 3 axes, e.g. tilt B, linear axes X and Z.

With 3-axes-tool machines, G49 is controlling the axes so that when moving the tilt B, the axes X and Z are always so that the tool peak is always at the same position.

Configuration and definition for the 3-axes-coordinate system

The 3-axes-coordinate system demands the following axis layout:

- X and Z axis are the basic coordinates.
- The B axis is rotating around an axis that is positioned vertically to the plane XZ.
- The positive rotating direction of B is seen from positive X direction counter-clockwise.
- The reference measures are termined so that the tool system is axis-parallell to the basic coordinates in position B=0.
- The offset between the tool peak and the rotating point is determined by the parameters P11802 (offset radius) and P11803 (offset angle).

Used parameters

P11800	Linear axes(physical axis number)
--------	-----------------------------------

e.g. the first 2 axes (X,Z) Byte 3, 2, 1 00 02 01 Hex Byte 4 reverse (Bit 2, 1)

P11801 Rotation axes (physical axis number)

e.g. the 3rd axis (B) Byte 3, 2, 1 00 00 03 Hex Byte 4 reverse (Bit 1)

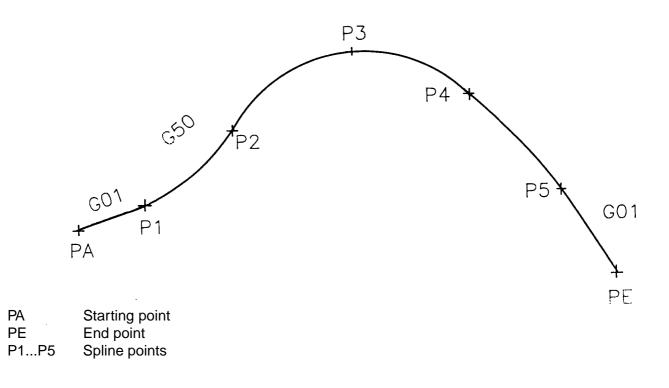
P11802 Offset radius, tilt - tool peak

P11803 Offset angle, tilt - tool peak

[mm]

[degree]

4.18 G50 / G51 / G52 Spline interpolation


- G50 Spline interpolation
- G51 Spline interpolation with feed adaptation at the contour
- G52 Polynom interpolation

G50 / G51 Spline interpolation

A sequence of points can be joined tangentially with a smooth curve trace with the spline interpolation. The points can be entered both as NC program as well as in the manual operation mode through "Teaching" with command=target.

The spline curve is started through a traverse, which is run with G00 or G01. The start can also be with G02 or G03, if the starting position is in a main plane (G17, G18, G19).

The spline interpolation is activated in the subsequent block through G50 / G51. There results a tangential transition, whereby the starting tangent of the spline curve is determined through the starting segment.

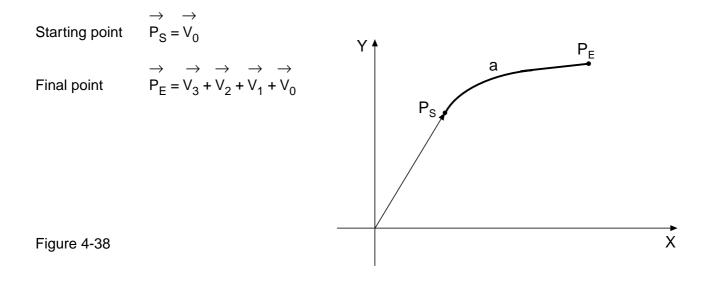
4.18 G50 / G51 / G52 Spline interpolation (continued)

In the corresponding way the spline curve is finished through programming the @@Ausleitungssegment with G00, G01, G02 or G03. The traverse conditions G00, G01, G02, G03 and G50 overwrite themselves mutually.

If the starting segment or the finishing segment are not programmed, the NC program stands still, because the spline interpolation can not be started or finished duly. In this case, the key 'Manaul' has to be pressed and the error has to be cleared.

G52 Polynom interpolation

The path a is described with the formula

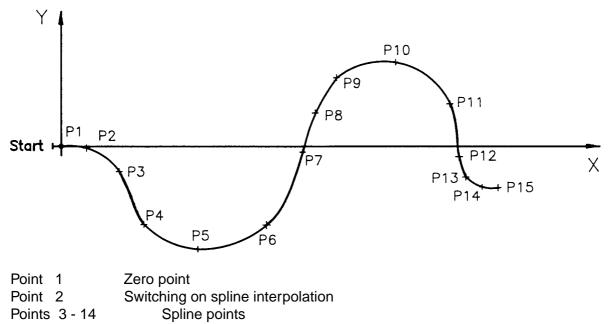

$$\overrightarrow{\mathsf{P}} = \overrightarrow{\mathsf{V}}_3 \ t^3 + \overrightarrow{\mathsf{V}}_2 \ t^2 + \overrightarrow{\mathsf{V}}_1 \ t^1 + \overrightarrow{\mathsf{V}}_0 \ ,$$

whereby the variable t can have a value between 0 and 1.

The vectors V_3 , V_2 , V_1 are programmed in components in the following form:

 $X : [V_{3X}, V_{2X}, V_{1X}] \qquad Y : [V_{3Y}, V_{2Y}, V_{1Y}] \qquad Z : [V_{3Z}, V_{2Z}, V_{1Z}]$

 V_0 is not programmed, since it is the location of the machine at the beginning of the block.



4.18 G50 / G51 / G52 Programming examples

Spline contour

N5 G54 G49 G0	00 F2000	X - 8	Y0	Z5		Starting point
N10 G01		X0	Y0	Z0	point 1	
N20 G50		X6,8	Y-0,5		point 2	Spline on
N30		X15,5	Y-6,7		point 3	
N40		X22	Y-20,6		point 4	
N50		X36,3	Y-27,1		point 5	
N60		X54,3	Y-20,7		point 6	
N70		X63,8	Y-1,5		point 7	
N80		X67,124	Y8,749		point 8	
N90		X72,7	Y18		point 9	
N100		X88,1	Y22		point 10	
N110		X102,5	Y11,1		point 11	
N120		X104,9	Y-2,8		point 12	
N130		X106,7	Y-8,1		point 13	
N140		X111	Y-10,7		point 14	
N150 G01		X115,2	Y-10,9		point 15	Spline off
N160 M30				Z5		

Point 15 Switching off of spline interpolation

4.19 G53 Machine zero point

With the input of G53 with G54 to G59 as well as with G92 programmed zero point shifts become ineffective. The program refers then to the machine zero point.

The function is effective modal and can be overwritten by G54 to G59. With the program start G53 is automatically adjusted.

G153 switches the zero shift off G53 as well as G54 to G59.

4.20 G 54 to G59 Zero points

With G54 to G59 points of zero can be called within the program.

The functions are effective modal and overwrite themselves opposite-acting. Additionally one is reset by G92 programmed shift.

The points of zero are called in the program with G54 to G59 in the null point memory. The size of the zero shift is determined by the stored values in the null point table.

Example: programming zero points

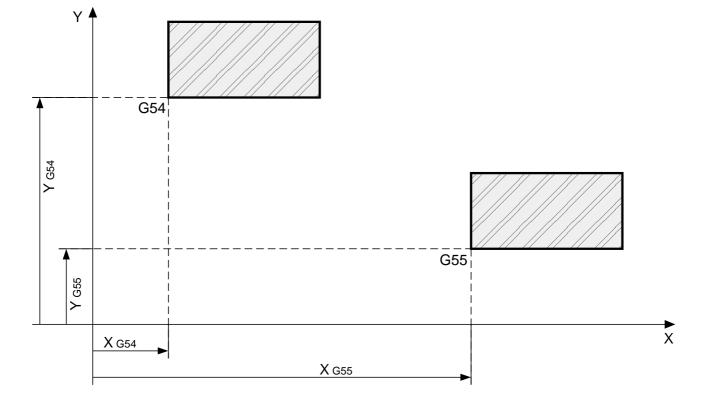
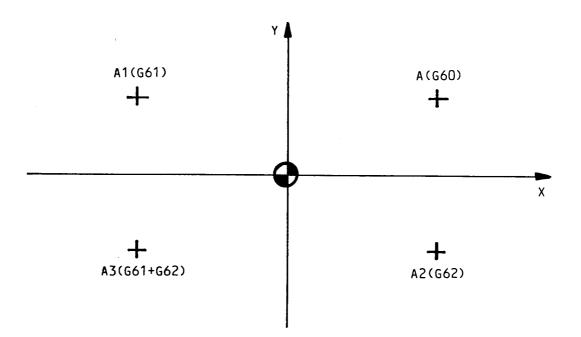


Figure 4-40


4.21 G60 / G61 / G62 Mirror imaging of coordinates

The mirror imaging function inverts the sign of programmed coordinates. The G61 function inverts the sign of the 1st main axis program values. The G62 function inverts the sign of the 2nd main axis program values.

Set plane	G61	G62
G17 (XY)	X becomes -X	Y becomes -Y
G18 (ZX)	Z becomes -Z	X becomes -X
G19 (YZ)	Y becomes -Y	Z becomes -Z

G60 cancels the mirror imaging functions G61 and G62 out. G60, G61 and G62 act modally.

Geometric definition

Figure 4-33

The programmed coordinates for point A are Xa and Ya.

When G61 is switched on point A becomes point A1 with -Xa and Ya. When G62 is switched on point A becomes point A2 with Xa and -Ya. When G61 and G62 are switched on point A becomes point A3 with -Xa and -Ya.

4.21 G60 / G61 / G62 Mirror imaging of coordinates (continued)

Circle centre point coordinates I, J, K

The circle centre point coordinates are mirror imaged according to the plane and functions set.

Zero points G53 to G59

Zero points G53 to G59 are not mirror-imaged.

Shift G92

The values of shift G92 are mirror imaged according to the appropriate plane and functions set.

Circular interpolation G02 and G03

When circular interpolation is switched on and G61 and G62 are active, G02 becomes G03 and G03 becomes G02. The direction of rotation remains unchanged when G61 and G62 are switched on.

Tool correction offset G41 and G42

When the tool correction offset is switched on and G61 and G62 are active, G41 becomes G42 and G42 becomes G41. The selected correction offset remains unchanged when G61 and G62 are switched on.

Effect of G66

G66 effects the block by block switching off of the mirror-imaging functions G61 and G62.

Incremental dimension programming G91

Using G91, the target point in the system that has not been mirror-imaged is firstly determined and is then mirror-imaged according to the appropriate plane and mirror-imaging functions set.

4.22 G63 / G64 "Feed rate 100%"

G63 Override 100% switch on

With G63 the Override value is set firmly to 100%, i.e. the override is not active any longer. NC program processing runs with the programmed feed.

The function is modal effectively and can by G64 again be switched off.

G64 Override 100% switch off

G64 switches G63 out

The function is modal effectively and can by G63 be overwritten.

With the program start G64 is preset.

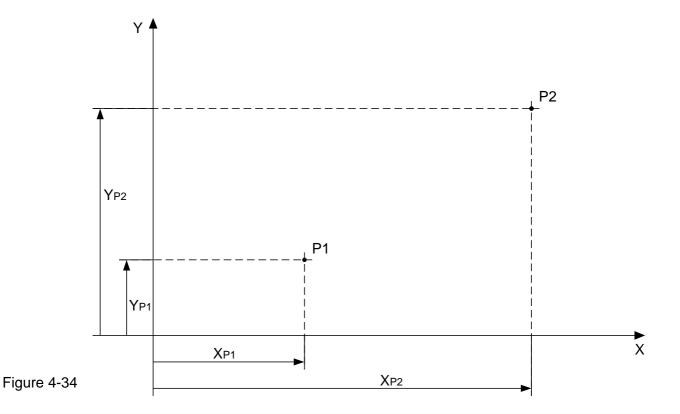
4.23 G66 Switching off all correction offsets

When programming G66, the machine zero point is taken as the reference point. All dimension inputs then refer to the machine zero point.

The G66 function is effective only in the block in which it was written.

In this particular block the zero points set by G54 to G59 and shift G92 are inoperative, as are any tool length and tool radius correction offsets.

They remain stored, however, and are effective in the next block again.



4.24 G90 Absolute dimension input

When G90 is being programmed absolute dimension input is chosen, i.e. all dimensions are referred to the program zero point (programmable using G54 to G59 and G92).

G90 operates modally and can be overwritten by G91. G90 is automatically set when the control system is switched on.

Example: Absolute dimension input

4.25 G91 Incremental dimension input

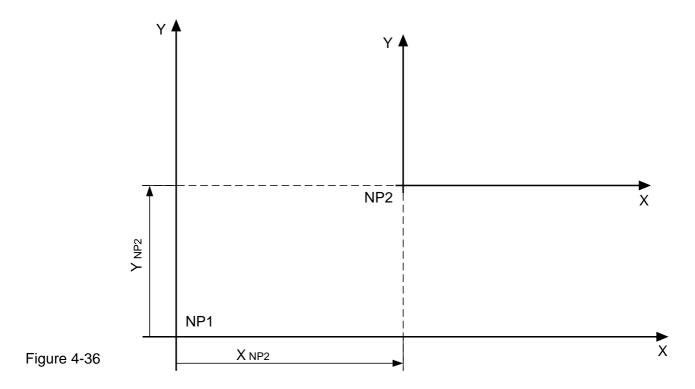
With the programming of G91 the chain measure input is selected. It always refers to the location of the axes started last.

G91 is modal effectively and can by G90 be overwritten.

Example: Incremental dimension input

4.26 G92 Zero point shift

Zero point shifs programmed by G92 are a fixed part of the NC program and therefore independent of the clamping of the workpiece. In contrast, zero points are programmed outside the NC program by G54 to G59 and activated in the NC program.


Traverse information in the block with G92 determines the zero point shift, but no traverse is activated.

Input: G92 X ... Y ... Z ...

The zero point is shifted by the programmed amounts.

The zero point shift programmed by G92 operates modally and is always referred absolutely to the machine zero point (G53) or to a set zero point (G54 to G59). G92 can be cleared by G53 to G59 or overwritten by a new G92.

Example: Zero point shift

4.27 G94 / G95 Feed modification

The functions determine the feed modifications:

G94 Feed in mm/min

G95 Feed in mm/r (revolution)

4.28 G96 / G97 Number of revolution modification

The functions define the speed modifications:

- G96 constant cutting velocity in mm/min
- G97 speed in U/min

In order to activate G96 / G97, the following parameters must be set:

P11640	spindle affects axis (physical axis) (example round axis C corresponds the 6. Axis	Input P11640:6)
P11641	datum axis for G96 (physical axis) (example procedure axis Y corresponds the 2. Axis If P11641 = 0 applies, then the reference position in P1164	Input P11641:2) 42.
P11642	reference position for G96 (e.g.: disk diameters)	[mm]
P11643	reference factor for G96 0 or — mm/min 1000 m/min	[mm/min]
P11644	max. speed for G96	
P11645	max. speed for G97	
P11646	reference factor for G97 0 or — U/min 1 degree/min	[U/min]
P11647	speed definition G96 / G97 Presetting 0 = G97 96 = G96	

4.28 G96 / G97 Number of revolution modification (continuation)

In the display selection menu the inputs under " spindle parameters " can be input. Spindle axis: 6 Datum axis: 2

Example NC Progr.: N10 G0 Y:50 N20 G96 G1 F50 S100 Y:0 The speed of the round axis increases the more, the more near processing toward the position Y:0 comes.

> N10 G0 Y:0 N20 G96 G1 F50 S100 Y:50 The speed of the round axis decreases itself the more, the more near processing toward the position Y:50 comes.

4.29 G170 / G171 inch system

G171 enables metric processing in the NC program with switched on inch system.

G170 switches G171 off

5. Cycles

5.1	G69 Measuring cycles	5 - 2
5.2	G71/G72/G73/G74/G75 Milling cycles	5 -16
5.2.1	G71 Rectangular pocket roughing, conventional	5 -17
5.2.2	G72 Rectangular pocket roughing, climb and conventional	5 -21
5.2.3	G73 Rectangular pocket roughing and finishing	5 -25
5.2.4	G74 circular pocket roughing	5 -29
5.2.5	G75 circular pocket roughing and finishing	5 -33
5.3	G80/G81/G83/G84/G85 Drilling cycles	5 -36
5.3.1	G81 Drilling with return at rapid travers	5 -40
5.3.2	G83 Deep-hole drilling	5 -42
5.3.3	G83 Deep-hole drilling with degressive in-feed	5 -44
5.3.4	G84 Tapping	5 -46
5.3.5	G85 Drilling with retraction at feed rate	5 -48
5.4	G86/G87/G88/G89 Drilling patterns	5 -50
5.4.1	G86 Vector programming	5 -54
5.4.2	G87 Parallelogram cycle	5 -60
5.4.3	G88 Grid machining	5 -66
5.4.4	G89 Machining of full circle and circular segment	5 -72
5.5	Customer specific cycles	5 -80

5.1 G69 measuring cycles

General

The measuring cycle is a NC program with the term Z69. This cycle must like all other cycles into the NC memory be loaded. The measuring cycle is called with G69.

Measuring cycles use the parameters P140 to P160 for programming. These parameters contain two types of information:

- Data, e.g.. P141 safety margin

- Parameter numbers, which indicate, where the data are stored, e.g.. P149: 500 (P149 is a pointer on another parameter).

Measuring cycles use the parameters P200 to P299 for internal calculations. Parts it safely that only free parameters are used for the addressing of data fields. Measuring cycles activate G40 (tool radius path correction out).

Measuring preparation

- Connecting it the sensor with the measuring input on the AAZ module (15pol. HD Sub Socket). If the measuring axes are distributed on several modules, all interconnect you Measuring inputs together (MT+ / MT-).
- Checking it the measuring logic for each measuring axis (P12045: \$xxxx1010...).
- Checking it the tool data of the used sensor. G69 requires tool length and tool radius of the sensor.

Compilation of the cycle parameters

Parameter		meaning			
P140		cycle selection			
P141	[mm]	safety margin			
P143	[mm/min]	measuring speed			
P144	[n]	number of measurements at the same point (> 0)			
P147 (P147)+4	[mm]	pointer on the measuring tolerance data confidence range			
P148		measuring axis in plane system (1 3)			
P149 (P149)+0 (P149)+1 (P149)+2 (P149)+3 (P149)+4 (P149)+5	[mm] [mm] [mm] [mm] [mm] [mm]	pointer on the data of point of trigger XN, point of trigger in negative direction 1. axis XP, point of trigger in positive direction 1. axis YN, point of trigger in negative direction 2. axis YP, point of trigger in positive direction 2. axis ZN, point of trigger in negative direction 3. axis ZP, point of trigger in positive direction 3. axis			
P150 (P150)+0 (P150)+1 (P150)+2 (P150)+3	[mm] [mm] [mm] [mm]	pointer on the calibration drilling data position of the calibration drilling focal point 1. axis (I) position of the calibration drilling focal point 2. axis (J) position of the calibration drilling focal point 3. axis (K) calibration drilling diameter			
P152	[mm]	expected drilling diameter			
P154 (P154)+0 (P154)+1 (P154)+2	[mm] [mm] [mm]	pointer on the measuring data measuring position 1. axis measuring position 2. axis measuring position 3. axis			

Cycle	Parameter	Calibrate of the sensor in drilling	Calibrate of the sensor at area	Determining of centre a drilling	Determining of positions at area
Cycle selection	P140	1	2	60	40
Safety margin	P141	х	х	Х	х
Measuring speed	P143	х	х	х	х
Number of measurem.	P144	х	х	х	х
Measuring tolerance	P147	х	х	Х	х
Confidence range	(P147)+4	х	х	х	х
Measuring axis in plane	P148				х
Data of point of trigger	P149	х	х	х	х
Point of trigger XN	(P149)+0	0		х	х
Point of trigger XP	(P149)+1	0		х	х
Point of trigger YN	(P149)+2	0		Х	х
Point of trigger YP	(P149)+3	0		х	х
Point of trigger ZN	(P149)+4				
Point of trigger ZP	(P149)+5		0		х
Calibration drilling data	P150	х			
Centre position 1.axis I	(P150)+0	X**	Х*		
Centre position 1.axis J	(P150)+1	X**	Х*		
Centre position 1.axis K	(P150)+2	X**	Х*		
Drilling diameter	(P150)+3	х			
Expected diameter	P152			х	
Output data of the pos.	P154			х	х
Measuring pos. 1. axis	(P154)+0			0**	0*
Measuring pos. 2. axis	(P154)+1			0**	0*
Measuring pos. 3. axis	(P154)+2			0**	0*

x: Parameter must be programmed

* : one of these

o: cycle edition

**: two of these

Message	Meaning
8130	uppersize
8131	undersize
8132	permissible measure difference exceeded
8133	confidence range exceeded
8134	reference drilling smaller than sensor
8135	boring axis is measuring axis
8136	sensor cannot be initiated
8137 8138 8139 8140 8141	P140 incorrectly programs P141 incorrectly programs P142 incorrectly programs P143 incorrectly programs P144 incorrectly programs
8142	P145/147/149/150 incorrectly programs
8143	empirical value incorrectly programs
8144	P146 incorrectly programs
8145 8146 8147 8148 8149	measuring tolerance 1 incorrectly programs measuring tolerance 2 incorrectly programs measuring tolerance 3 incorrectly programs measuring tolerance 4 incorrectly programs measuring tolerance 5 incorrectly programs
8150	P148 incorrectly programs
8151 8152 8153 8154 8155 8156	point of trigger XN incorrectly programs point of trigger XP incorrectly programs point of trigger YN incorrectly programs point of trigger YP incorrectly programs point of trigger ZN incorrectly programs point of trigger ZP incorrectly programs

Message	Meaning
8157 8158 8159 8160	point of drilling I incorrectly programs point of drilling J incorrectly programs point of drilling K incorrectly programs point of drilling R incorrectly programs
8161 8162 8163	P151 incorrectly programs P152 incorrectly programs P153 incorrectly programs
8164	tool not called
8165 8166	G53 not actively G54 to G59 not actively
8167	sensor actively outside of the safety area
8168	P154 incorrectly programs

Calibration of the sensor in drilling G69 P140:1

The cycle requires a calibration drilling and a sensor. Measuring is executed with the two axes of the selected interpolation plane.

The sensor must be pre-positioned first on the drilling centre point in the selected interpolation plane and the sensor ball within the drilling.

If for example G17 is defined, the centre point of the calibration drilling must in (P150)+0 and (P150)+1 and the diameter in (P150)+3 to be defined.

The cycle positions first the 1. and 2. axis in the interpolation plane to the programmed centre point of the drilling. Now the cycle moves the 1. axis in positive direction to the drilling edge. The axis starts with the feed of the NC program and reduces the feed to F:p143 at the distance of P141 (safety margin) before the expected drilling edge. If a measuring signal before the safety margin occurs, a message is output (M8167).

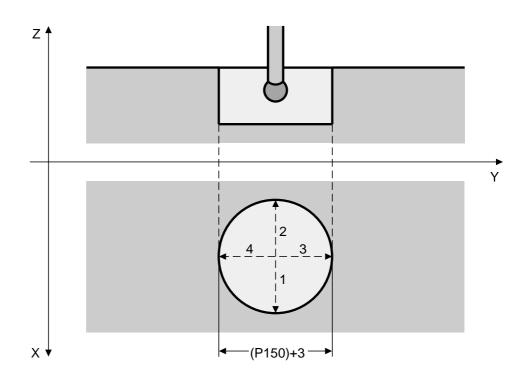
From the safety margin the cycle moves the axis to the expected drilling edge plus confidence interval. If there is still no signal, a message (M8136) appears.

If there is a signal of the sensor, immediately the axis movement stops and the cycle calculates the point of trigger of the sensor and writes it in (P149)+n (axis movement positively: Point of trigger negatively).

If P144 is > 1, the cycle returns to the safety margin. From here the cycle starts a new measuring movement to the same drilling edge. Afterwards the cycle looks the other side up of the drilling. Become subsequently, the movements with the 2. Axis executed.

If the cycle is finished, then is the data field (P149)+n with the points of trigger of the sensor described. Following measuring cycles can operate with these data. The position of the moved axes now is in the center of the drilling.

Parts it safely,


- that the tool radius of the sensor is correct (P8160).

- to operate in the null point, in which the parameter data (P150) apply.

Example: The calibration of the sensor in drilling G69 P140:1

N20 N30 N40	T1 M16 G17 G53 G0 G1 Z270	X600.000 Y300.000 Z F3000	2280.000	A0 B0
N100 N110 N120 N130 N140 N150 N160 N160 N170 N180 N182 N230	P140:1 P141:3 P143:100 P144:2 P147:500 P504:5 P149:510 P150:520 P520:624.96 G69	P521:324.3P523:54		{Cycle G69 / 1 initialize } {Cycle type} {Safety margin } {Measuring speed } {Number of the measurements } {Pointer on tolerance data } {Confidence range } {Pointer on trigger data } {Pointer on measuring data } {I, J, D } {Cycle call }
N240	G0 Z280	M30		

Calibration of the sensor at area G69 P140:2

The cycle requires a calibrationing area and a sensor. Measuring becomes with the 3. axis of the selected interpolation plane executed (definition of G17...). The sensor must be pre-positioned on the calibrationing area.

If for example G17 is defined, the position on the calibrationing area must in (P150)+2 to be defined.

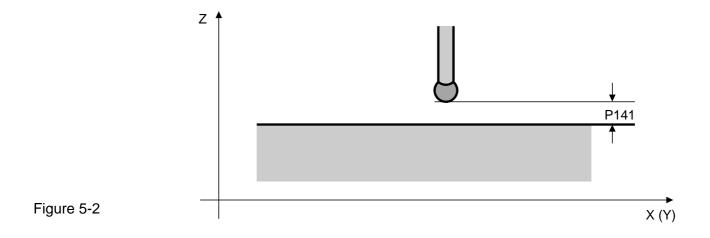
The cycle moves now 3. axis toward the calibrationing area. The axis starts with the feed of the NC program and reduces the feed to F:p143 at the distance of P141 (safety margin) before the expected area. If a measuring signal before the safety margin occurs, a message is output (M8167).

From the safety margin the cycle moves the axis to the expected area plus confidence interval. If there is still no signal, a message (M8136) appears.

If there is a signal of the sensor, immediately the axis movement stops and the cycle calculates the point of trigger of the sensor and writes it in (P149)+n (axis movement positively: Point of trigger negatively).

If P144 is > 1, the cycle turns back to the safety margin. From here the cycle starts a new measuring movement to the same area.

If the cycle is finished, then is the data field (P149)+n with the points of trigger of the sensor described. Following measuring cycles can operate with these data. The position of the moved axis now is in the safety margin.


Parts it safely,

- that the tool radius of the sensor is correct (P8160, P8162).
- to operate in the null point, in which the parameter data (P150) apply.

Example: The calibration of the sensor in drilling G69 P140:2

N20 N30 N40	T1 M16 G17 G53 G0 G1 Z270	X600.000 F3000	Y300.000	Z280.000	A0	В0
N100 N110 N120 N130 N140 N150 N160 N160 N170 N180 N182 N230	P140:2 P141:3 P143:100 P144:2 P147:500 P504:5 P149:510 P150:520 P522:260.20 G69				{Cyce {Safe {Mea {Nur {Poin {Cor {Poin {Poin {Poin {K}}	cle G69 / 2 initialize } cle type} ety margin } asuring speed } mber of the measurements } nter on tolerance data } nfidence range } nter on trigger data } nter on measuring data } cle call }
N240	G0 Z280	M30				

Determining the center of a drilling G69 P140:60

The measurement is executed with both axes of the selected interpolation plane (see G17...). The sensor should be at the beginning approximately on the drilling centre point in the selected interpolation plane and the sensor ball within the drilling pre-positioned.

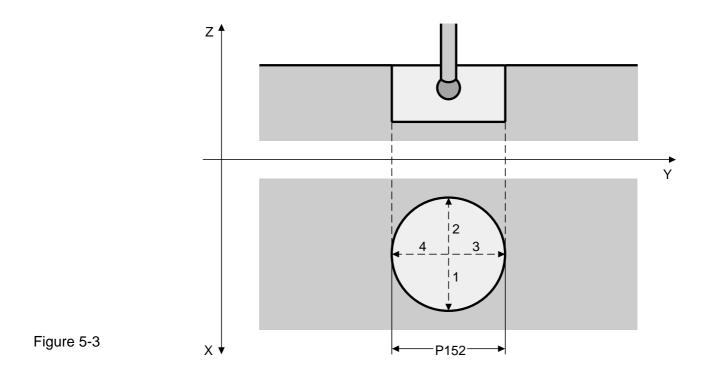
The cycle moves the 1. axis in positive direction to the drilling edge. The axis starts with the feed of the NC program and reduces the feed to F:p143 at the distance (diameters / 2 - safety margin) = (P152 / 2 - P141).

If a measuring signal before this point occurs, a message is output (M8167).

From here the cycle moves the axis to the expected drilling edge plus confidence interval. If there is still no signal, a message (M8136) appears.

If there is a signal of the sensor, immediately the axis movement stops and the cycle calculates the edge position.

If P144 is > 1, the cycle turns back to the safety margin. From here the cycle starts a new measuring movement to the same drilling edge. Afterwards the cycle looks the other side up of the drilling. Now become the movements with the 2. axis made.


If the cycle is finished, then is the data field (P154)+n with the drilling centre point described. The position of the moved axes now is in the center of the drilling.

Parts it safely that the tool radius of the sensor is correct (P8161, P8163).

Example: The calibration of the sensor in drilling G69 P140:60

N20 N30 N40	T1 M16 G17 G53 G0 G1 Z270	X600.000 F3000	Y300.000	Z280.000	A0	В0
N100 N110 N120 N130 N140 N150 N160 N160 N170 N180 N182 N230	P140:60 P141:3 P143:100 P144:2 P147:500 P504:5 P149:510 P150:520 P154:530 G69				{Cyce {Safe {Meae {Nure {Point Point	cle G69 / 60 initialize } cle type} ety margin } asuring speed } mber of the measurements } nter on tolerance data } nfidence range } nter on trigger data } nter on measuring data } nter on output } cle call }
N240	G0 Z280	M30				

determining an individual item in the area G69 P140:40

The sensor must be pre-positioned at the beginning over the contact surface. The measurement is executed with the axis defined in P148.

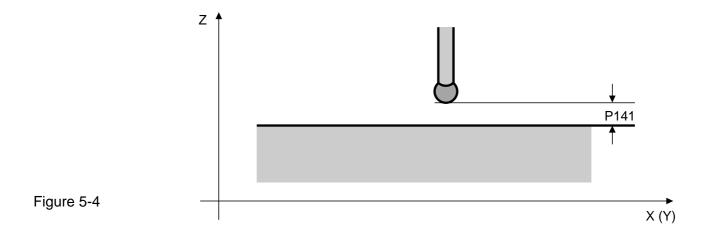
The cycle starts into negative direction with measuring speed (P143) If there is still no signal of the sensor, the axes in the position (initial position - confidence interval (P147)+4) stop and a message (M8136) appears.

If there is a signal of the sensor, immediately the axis movement stops and the cycle calculates the position on the area and writes the data in (P154)+n.

Example G17	with P148:3	writes after cycle	P(154)+2
	with P148:2	writes after cycle	P(154)+1
	with P148:1	writes after cycle	P(154)+0

If P144 is > 1, the cycle turns back to the safety margin. From here the cycle starts a new measuring movement to the same area.

The position of the moved axes is in the safety margin.


Parts it safely,

- that the tool length of the sensor is correct (P8161, P8163), if 3. axis is selected
- that the tool radius of the sensor is correct (P8160, P8162),
- if 1. or 2. axis is selected

Example: The calibration of the sensor in drilling G69 P140:40

N20 N30 N40	T1 M16 G17 G53 G0 G1 Z270	X600.000 F3000	Y300.000	Z280.000	A0	B0
N100 N110 N120 N130 N140 N150 N160 N160 N170 N180 N182 N230	P140:40 P141:3 P143:100 P144:2 P147:500 P504:5 P144:3 P149:510 P150:520 G69				{Cyce {Saf {Mea {Nure {Point {Core {Mea {Point {Point {Point {Point	cle G69 / 40 initialize } cle type} ety margin } asuring speed } mber of the measurements } nter on tolerance data } nfidence range } asuring axes } nter on trigger data } nter on measuring data } cle call }
N240	G0 Z280	M30				

5.2 G71 / G72 / G73 / G74 / G75 Milling cycles

List of canned milling cycles

- G71 Rectangular pocket roughing, conventional
- G72 Rectungular pocket roughing, conventional and climb
- G73 Rectangular pocket roughing and finishing
- G74 Circular pocket roughing
- G75 Circular pocket roughing and finishing

The millinging cycles are block by block effective. The parameter inputs remain against it modal effectively.

In order to avoid over regulation, all parameters are to be reset, with a programming type not to be used.

Messages

The numbers for cycle messages start with 8xxx. A list can be found in section messages

5.2.1 G71 Rectangular pocket roughing, conventional

Starting point definition

Before starting any machining cycles, the milling cutter should be above the workpiece by the safety margin and at the centre of the pocket.

Whether the starting point S1 or S2 is homed into depends on the sign of the programmed in-feed P16.

Positive sign: starting point S1 Negative sign: starting point S2

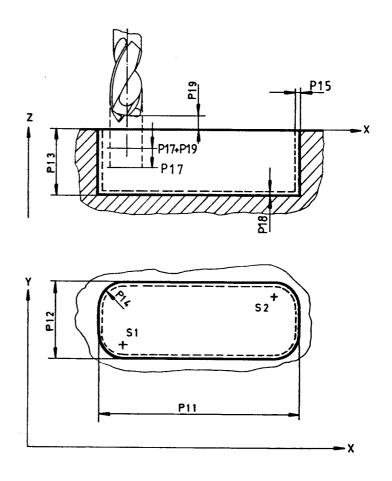
The milling direction is established by the CNC and always in the direction of the longer pocket side. If the pocket sides are the same, milling takes place in the X direction.

Parameter input

All parameters except for P16 should have positive sign when inputting.

Parameter	Significance
P11	Pocket dimension in X direction
P12	Pocket dimension in Y direction
P13	Pocket depth in Z direction
P14	Corner radius
P15	Contour allowance in X and Y directions
P16	In-feed dimension in X or Y directions (prefix + or -)
P17	In-feed dimension in Z direction
P18	Pocket depth allowance in Z direction
P19	Safety margin in Z direction
P21	Feed rate in Z direction (when plunging into material)

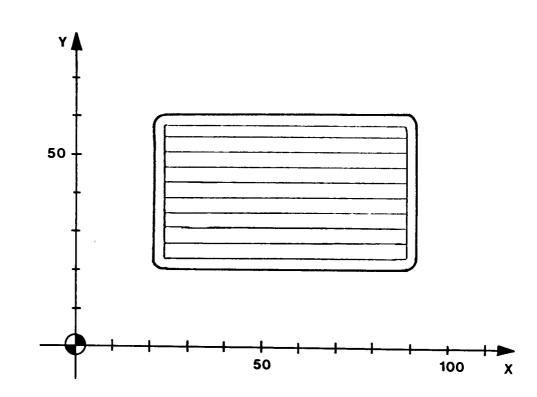
During cycle processing a possibly programmed correction becomes G41 / G42 switched off, since the tool radius correction in the cycle is considered.


Feed in z-direction (only when immersing into the material) is programmable with P21. Is P21 programmed, does not become immersing into the material with under F programmed feed executed.

5.2.1 G71 Rectangular pocket roughing, conventional (continued)

Machining sequence

- Positioning in the pocket center and in the safety margin P19
- Home in on starting point S1 or S2 (depending on prefix of P16)
- In-feed in Z direction at feed rate P21 (if programmed)
- Conventional milling to pocket dimension less allowance P15 in X and Y directions
- Retraction of milling cutter by 2 mm in Z direction
- Retraction in X or Y direction
- In-feed in Z direction
- In-feed in X or Y direction
- In-feed repetition until pocket dimension less allowance P15 is reached
- Milling over burrs
- Retraction in Z direction to safety margin
- Retraction to starting position in XY plane
- Repetition of in-feeds until pocket depth less allowance P18 is reached
- Retraction to starting position (centre of pocket)

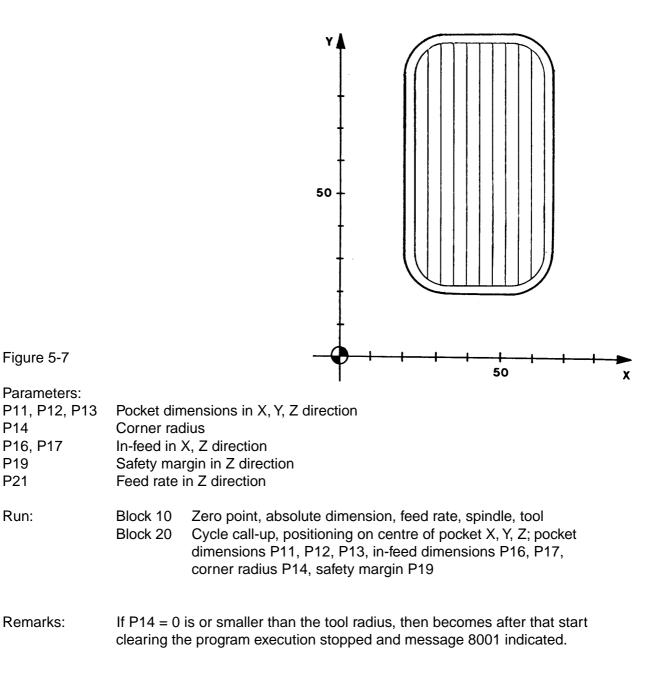


5.2.1 G71 Rectangular pocket roughing, conventional (continued)

G 71 Example 1: Pocket dimensions X=71mm, Y=41mm, Z=5mm; Tool-radius=3mm

N10	G00	G54	G90	F2500	S900	T02	M06 M03	M07
N20	G71 P14:	X55,5 P15:0	,	Z2 P17:3		P12:41 P21:100	P13:5	M30

Figure 5-6


Parameters: P11, P12, P13 P16, P17 P19 P21	Pocket dimensions in X, Y, Z direction In-feed in Y, Z direction Safety margin in Z direction Feed rate in Z direction
Run:	Block 10 Zero point, absolute dimension, feed rate, spindle, tool Block 20 Cycle call-up, positioning on centre of pocket X, Y, Z, pocket dimensions P11, P12, P13, in-feed dimensions P16, P17, safety margin P19
Remarks:	Since the corner radius P14 is not programmed, it becomes with the programmed tool radius equated.

5.2.1 G71 Rectangular pocket roughing, conventional (continued)

G71 Example 2: Pocket dimensions X=46mm, Y=81mm, Z=30mm; Tool-radius=3mm, corner radius=13mm

N10	G00	G54	G90	F1000	S750	T02 M06	M03 M07
N20		X43 P16:-4			P11:46 P21:400	P12:81 M30	P13:30

5.2.2 G72 Rectangular pocket roughing, climb and conventional

Starting point definition

Before the start of the machining cycles the milling cutter should be above the workpiece by the safety margin and in the middle of the pocket.

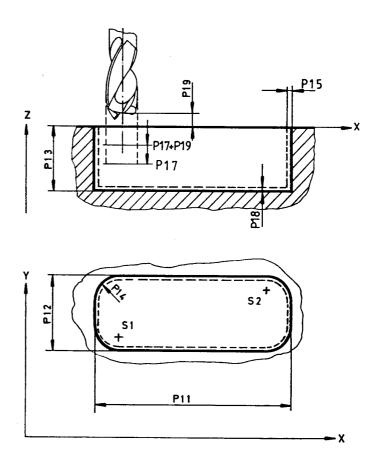
Whether the starting point S1 or S2 is homed into depends on the sign of the programmed in-feed P16.

Sign, positive: starting point S1 Sign, negative: starting point S2

The determination of the milling direction takes place in the CNC and always in the direction of the longer pocket side. If the pocket sides are the same, milling takes place along the X direction.

Parameter input

All parameters except for P16 should have a positive sign during inputting.


Parameter	Significance
P11	Pocket dimension in X direction
P12	Pocket dimension in Y direction
P13	Pocket depth in Z direction
P14	Corner radius
P15	Contour allowance in X and Y directions
P16	In-feed dimension in X or Y directions (sign +/-)
P17	In-feed dimension in Z direction
P18	Pocket depth allowance in Z direction
P19	Safety margin in Z direction
P21	Feed rate in Z direction (when plunging into material)

5.2.2 G72 Rectangular pocket roughing, climb and conventional (continued)

Machining sequence

- Positioning in the pocket center and in the safety margin P19
- Home in on starting point S1 or S2 (each according to sign of P16)
- In-feed in Z direction at feed rate P21 (if programmed)
- Conventional milling to pocket dimension less the allowance P15 in X and Y direction
- In-feed in X or Y direction
- Milling in conventional direction
- In-feed in X or Y direction
- In-feed repetition until pocket dimension less allowance P15 is reached
- Milling over burrs along edge
- Retraction in Z direction to safety margin
- Retraction to starting position in XY plane
- In-feed in Z direction to previous dimension
- Milling over burrs along other edge
- Retraction in Z direction to safety margin
- Retraction to starting position in XY plane
- Repetition of in-feeds until pocket depth less allowance P18 is reached
- Retraction to starting position (centre of pocket)

5.2.2 G72 Rectangular pocket roughing, climb and conventional milling (cont.)

G72 Example 1: Pocket dimensions X=66mm, Y=31mm, Z=5mm; Tool-radius=3mm

N10	G00 G54	G90	F2000	S850	T02	M06 M03	M07	
N20	G72 X53 P16:5,1		Z1 P19:1	P11:66 M30	P12:31	P13:5	P14:	P15:0

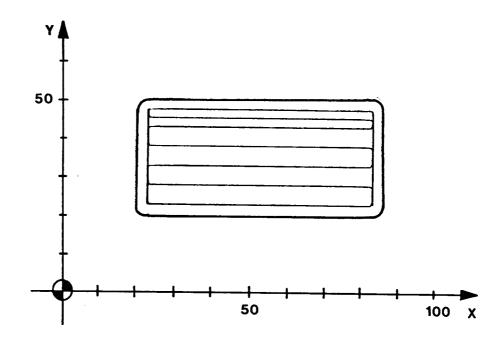
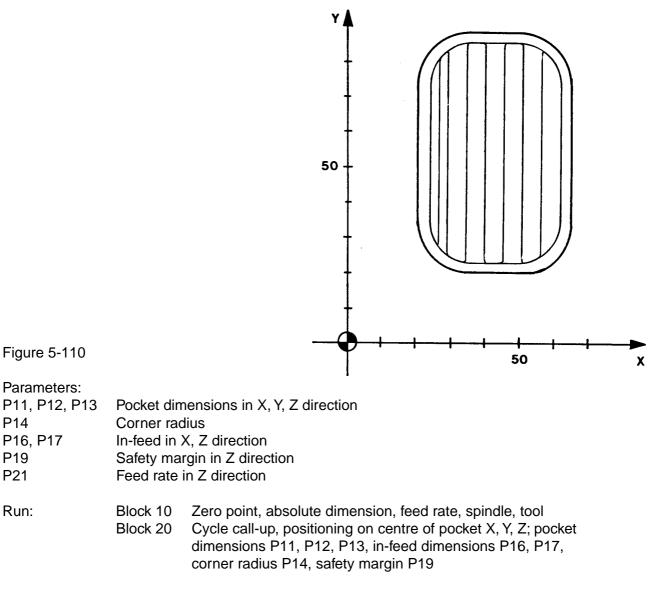


Figure 5-9


Parameters P11, P12, F P16, P17 P19	213 Pocket di In-feed in	mensions in X, Y, Z direction Y, Z direction argin in Z direction		
Run:	Block 10 Block 20			
Remarks: As the corner radius P14 is not programmed it is identified along with the programmed tool radius.				

G72 Rectangular pocket roughing, climb and conventional milling (cont.) 5.2.2

G72 Example 2: Pocket dimensions X=44mm, Y=69mm, Z=3mm; Tool radius=3mm, corner radius=15mm

N10	G00 G54	G90	F2000	S950	T02	M06	M03	M07
N20	G72 X42 P16:5,5	,	Z1 P19:1	P11:44 P21:100		P13:3	P14:15	P15=0

Remarks: If P14=0 or is smaller than the tool radius the program run is shut down after the start and fault feed-back 1301 (geometry fault) is displayed.

P14

P19

P21

Run:

5.2.3 G73 Rectangular pocket roughing and finishing

Starting point definition

Before the start of the machining cycles, the milling cutter should be above the workpiece at the safety margin and in the middle of the pocket.

Whether the starting point S1 or S2 is homed into depends on the sign of the programmed in-feed P16.

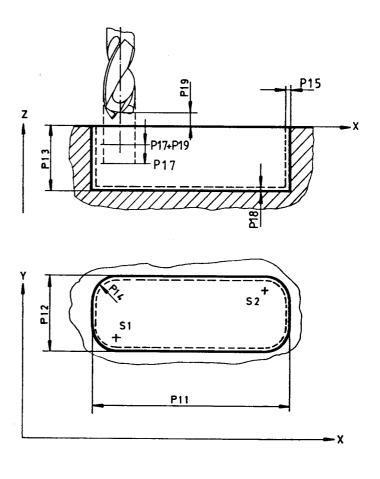
Sign, positive: starting point S1 Sign, negative: starting point S2

Sign, negative: starting point 52

The milling direction is established in the CNC and is always in the direction of the longer pocket side. If the pocket sides are the same, milling takes place along the X direction.

Parameter input

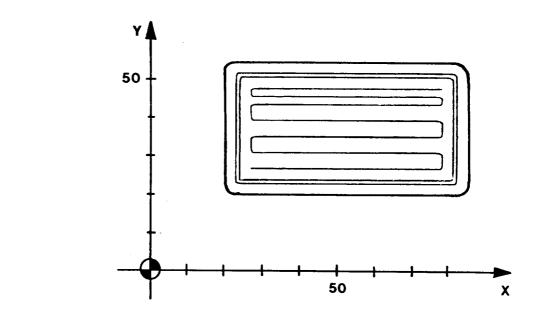
All parameters except for P16 should have a positive sign when inputting.


ïcance
et dimension in X direction
et dimension in Y direction
et depth in Z direction
er radius
our allowance in X and Y direction
d dimension in X or Y direction (sign +/-)
d dimension in Z direction
et depth allowance in Z direction
y margin in Z direction
d dimension when finishing, to remove allowance P15;
d direction as for P16
rate in Z direction (when plunging into material)

5.2.3 G73 Rectangular pocket roughing and finishing (continued)

Machining

- Positioning in the pocket center and in the safety margin P19
- Home in on starting point S1 or S2 (each according to sign of P16)
- In-feed in Z direction at feed rate P21 (if programmed)
- Milling pocket contour (less allowance P15) to starting point
- In-feed repetition until pocket depth P13 less allowance P18 is reached
- Retraction to starting plane
- In-feed in X or Y direction
- In-feed in Z direction at feed rate P21 (if programmed)
- Conventional and climb milling of remaining material
- Retraction in Z direction and to starting position and in-feed
- In-feed repetition until pocket dimension less allowance P18 is reached.
- Retraction in Z direction to starting plane
- In-feed for finishing
- In-feed in Z direction at 0.5 of the programmed feed rate F to pocket depth less P18
- Finishing contour to starting point at 0.5 of the programmed feed rate
- In-feed repetition until finished contour is reached
- Retraction to starting position at programmed feed rate



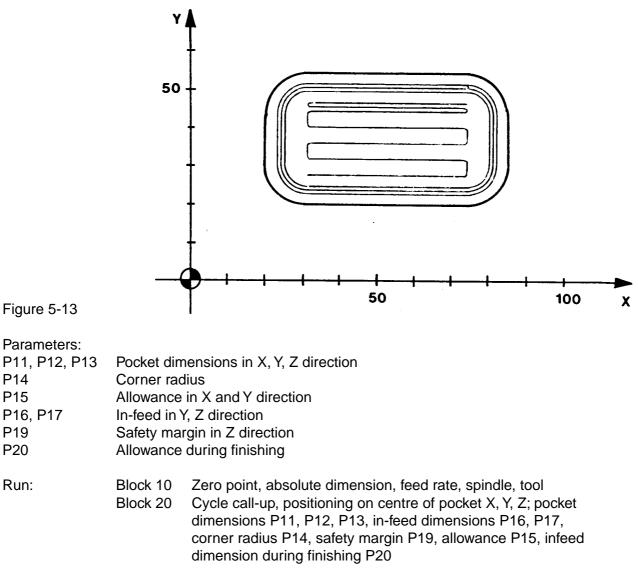
5.2.3 G73 Rectangular pocket roughing and finishing (continued)

G73 Example 1: Pocket dimensions X=64mm, Y=35mm, Z=5mm; Tool radius=3mm

N10 G	00 G54	G90	F1500	S950	T02	M06	M03	M07
	73 X52,5 5:1	Y37,5 P16:4,5		P11:64 7:2 P19			P14=0	

Figure 5-12

Parameters:


P11, P12, P13 P15 P16, P17 P19	Pocket dimensions in X, Y, Z direction Allowance in X and Y direction In-feed in Y, Z direction Safety margin in Z direction					
P20	Allowance	during finishing				
Run:	Block 10 Block 20	Zero point, absolute dimension, feed rate, spindle, tool Cycle call-up, positioning on centre of pocket X, Y, Z; pocket dimensions P11, P12, P13, in-feed dimensions P16, P17, allowance P15, safety margin P19, in-feed dimension when finishing P20				
Remarks:	As the cor tool radius	mer radius P14 is not programmed it is made equal to the programmed s.				

5.2.3 G73 Rectangular pocket roughing and finishing (continued)

G73 Example 2: Po	cket dimensions X=65mm,	, Y=35mm, Z=5mr	n; Tool radius=3mm, corner
rac	lius=11mm		

N10	G00 G54	G90	F1500	S950	T02	M06	M03	M07
	G73 X52,5 P15:1,5	Y37,5 P16:4,2		P11:65 P19:1	P12:35 P20:1	P13:5 M30	P14:11	

Remarks: If P14=0 or is smaller than the tool radius the program run is shut down after the start and message 1301 (geometry fault) is displayed.

5.2.4 G74 circular pocket roughing

Starting point definition

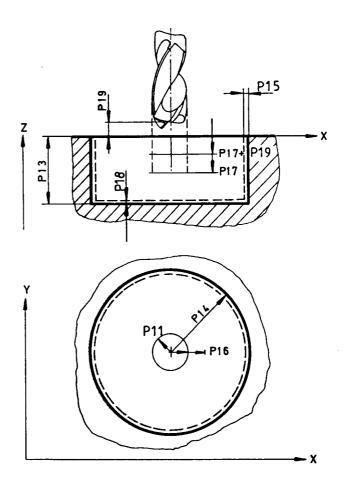
Before the start of the machining cycles the milling cutter should be above the workpiece at the safety margin and at the centre of the pocket.

Parameter input

All parameters except for P16 should have a positive sign when inputting. The sign of P16 determines the direction of milling, i.e.: Milling direction G02, the sign of P16 is positive Milling direction G03, the sign of P16 is negative

Parameter Significance

- P11 Internal radius (if core drilled)
- P12 Depth of pocket
- P14 Pocket radius
- P15 Allowance at circumference
- P16 In-feed dimension in X direction
- P17 In-feed dimension in Z direction
- P18 Pocket depth allowance in Z direction
- P19 Safety margin
- P21 Feed rate in Z direction (when plunging into material)


When specifying the internal radius P11, the first in-feed in the X direction is corrected by the appropriate amount: 1st in-feed = P11 + P16.

5.2.4 G74 circular pocket roughing (continued)

Machining

- Positioning in the pocket center and in the safety margin P19
- In-feed in Z direction at feed rate P21 (if programmed)
- In-feed in X direction
- Spiral milling
- Milling circular pocket to finished size less allowance P15
- Retraction along the semicircle with R=2.5mm max.
- Retraction in Z direction by 2mm
- Retraction to centre of pocket
- In-feed repetition until pocket dimension less allowance P18 in Z direction is reached
- Retraction to starting position

5.2.4 G74 Circular pocket roughing (continued)

G74 Example 1: Pocket radius R=33mm, pocket depth Z=27mm; Tool radius=3mm										
N10	G00	G54	G90	F1500	S950	T02	M06	M03	M07	
N20	G74	X53	Y53	Z1	P13:27	P14:33	P16:5,1	P17:5	P19:1	M30

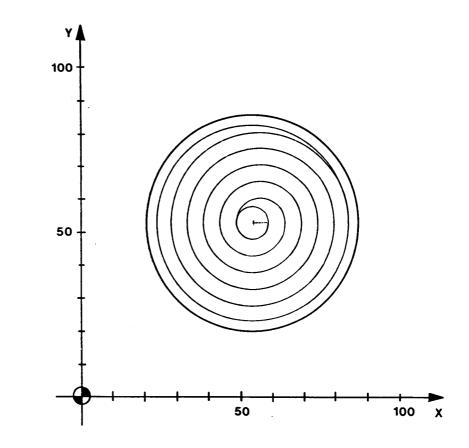


Figure 5-15

Parameters:

- P13 Pocket depth in Z direction
- P16, P17 In-feed in X, Z direction
- P14 Pocket radius
- P19 Safety margin in Z direction

Run: Block 10 Zero point, absolute dimension, feed rate, spindle, tool

Block 20 Cycle call-up, positioning on centre of pocket X, Y, Z, pocket depth P13, in-feed dimensions P16, P17, pocket radius P14, safety margin P19

5.2.4 G74 circular pocket roughing (continued)

G74 Example 2: Pocket radius R=30mm, pocket depth Z=31mm; Tool radius=3mm, core bore drilling at 20mm dia.

N10	G00 G54	G90	F1500	S950	T02	M06	M03	M07
N20	G74 X50 P19:1	Y50 M30	Z1	P11:10	P13:31	P14:30	P16:4	P17:8

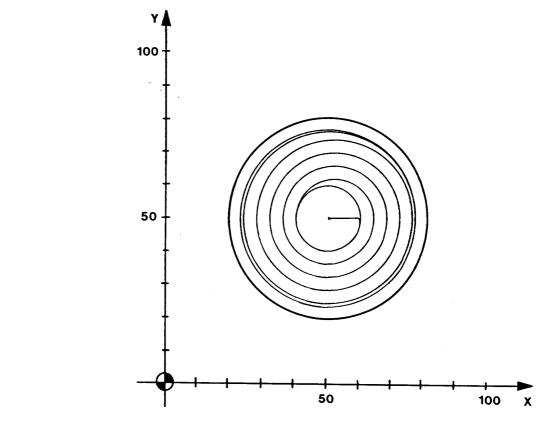


Figure 5-16

Parameters:

- P11 Internal radius (if core drilled)
- P13 Pocket depth in Z direction
- P16, P17 In-feed in X, Z direction
- P14 Pocket radius
- P19 Safety margin in Z direction

Run:Block 10Zero point, absolute dimension, feed rate, spindle, toolBlock 20Cycle call-up, positioning on centre of pocket X, Y, Z, pocket depth P13,
in-feed dimensions P16, P17, pocket radius P14, safety margin P19

5.2.5 G75 circular pocket roughing and finishing

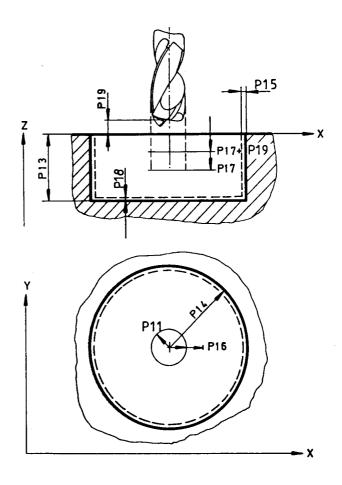
Starting point definition

Before the start of the machining cycles the milling cutter should be above the workpiece at the safety margin and at the centre of the pocket.

Parameter input

All parameters except for P16 should have a positive sign when inputting. The sign of P16 determines the direction of milling, i.e.: Milling direction G02, the sign of P16 is positive Milling direction G03, the sign of P16 is negative

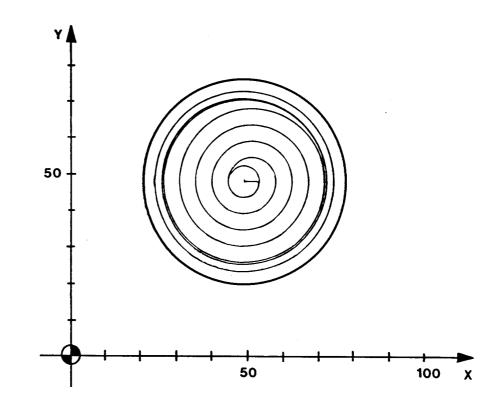
Parameter	Significance
P11	Internal radius (if drilled)
P13	Depth of pocket
P14	Pocket radius
P15	Allowance at circumference
P16	In-feed dimension in X direction
P17	In-feed dimension in Z direction
P18	Pocket depth allowance in Z direction
P19	Safety margin
P20	In-feed dimension when finishing, to remove P15, in-feed direction as with P16
P21	Feed rate in Z direction (when plunging into material)


With specification of the internal radius P11 the first feed in x-direction becomes around the suitable amount corrects: 1. Feed = P11 + P16.

5.2.5 G75 circular pocket roughing and finishing (continued)

Machining

- Positioning in the pocket center and in the safety margin P19
- In-feed in Z direction at feed rate P21 (if programmed)
- In-feed in X direction
- Spiral milling
- Milling circular pocket to finished size less allowance P15
- Retraction along the semicircle with R=2.5mm max.
- Retraction in Z direction
- Retraction to centre of pocket
- In-feed repetition until pocket dimension less allowance P18 in Z direction is reached
- Retraction along the semicircle with R=2.5mm max.
- In-feed at half feed rate for finishing along the semicircle
- Milling along the circle at half of the programmed feed rate
- Retraction along the semicircle
- In-feed repetition until finished dimension is reached
- Retraction along the semicircle
- Retraction to starting position at programmed feed rate



5.2.5 G75 circular pocket roughing and finishing (continued)

N10	G00 G54	G90 F1500	0 S950	T02	M06	M03	M07
N20	G75 X48 P19:1		P13:35 M30	P14:28	P15:2	P16:4,1	P17:8

Figure 5-18

Parameters:

- P13 Pocket depth in Z direction
- P14 Pocket radius
- P15 Allowance at circumference
- P16, P17 In-feed in X, Z direction
- P19 Safety margin in Z direction
- P20 In-feed dimension during finishing
- Run:

Block 10 Zero point, absolute dimension, feed rate, spindle, tool
Block 20 Cycle call-up, positioning on centre of pocket X, Y, Z, pocket depth P13, in-feed dimensions P16, P17, pocket radius P14, safety margin P19, in-feed dimension during finishing P20

5.3 G81 / G83 / G84 / G85 Drilling cycles

The drill cycles are block by block effective. The parameter inputs remain against it modal effectively.

In order to avoid over regulation, all parameters are to be reset, which are not used with a programming type.

List of drilling cycles

Drilling cycle according to DIN 66025	Programming in CNC900
G81 Drilling with rapid return	G81
G82 Drilling with rapid return and	G81, G04. Free cutting time free-cutting
G83 Deep hole drilling	G83
G84 Tapping	G84, G04. Spindle turnaround time
G85 Drilling with return at feed rate	G85

D

5.3 G81 / G83 / G84 / G85 Drilling cycles

Programming of characteristics

for the programming of the drill cycles only parameters can be used.

Parameter Meaning

P30	Free cutting time	Turn back time of the spindle after achieving	the drilling depth
P31	Compensating chuck	G84P31:3P31:4P31:0 or -= G84 standard cycle (with compared)	nsating chuck left
P32 P32	Drilling feed Thread pitch	bei G84	
P33 P33	Drilling depth Thread depth	bei G84	absolute absolute
P34	Anticipation plane	Safety margin of the processing upper edge	absolute
P35	Retreat plane	To run around of obstacles in the setting axis	absolute
P36 P36	No. of strokes Setting depth	G83, constant setting depth = (P33 - P34) / G83, degressive setting depth	P36
P37	1st Stroke	G83, degressive setting depth	
P38	Safety margin	G83, presetting = 1mm	incremental
P39	Gradual decrease	G83, degressive setting depth P39 : 1 = on P39 : 0 or - = off	

Drilling depth P33, anticipation plane P34 and retreat plane P35 are dependant of the planes set over G17, G18 or G19. In the following examples, G17 is activated with the axis names X (1st axis), Y (2nd axis) and Z (3rd axis).

5.3 G81 / G83 / G84 / G85 Drilling cycles (continued)

Parameters for drilling cycles

Drilling cycle Parameter

	Free cutting time	Drilling feed	Drilling depth	Antici- pation plane	Retreat plane	Number of strokes	1st stroke	-	Gradual dec- rease	Dri- ling speed
	P30	P32	P33	P43	P35	P36	P37	P38	P39	S
G81	*	*	*	*	*	-	-	-	-	*
G83 constant	*	*	*	*	*	*	-	*	-	*
G83 degressiv	v *	*	*	*	*	*	*	*	*	*
G84	*	*	*	*	*	-	-	-	-	*
G85	*	*	*	*	*	-	-	-	-	*

When calling up a drilling cycle, a direction of spindle rotation and spindle speed should be active. If these two values have already been set when the cycle is called up they are taken as the preset values for the drilling cycles.

Programming of a safety margin (P38) is optional. If this characteristic is not input a safety margin of 1 mm is preset.

When calling up a drilling cycle, the fields marked * should have been programmed in one way or another.

Messages

The numbers for cycle messages start with 8xxx. A list can be found in section messages

Activation conditions

For a drilling cycle to be carried out, at least one of the X, Y or Z coordinates should be programmed per main block. This also applies to parameter P33 for the drilling depth Z.

5.3 G81 / G83 / G84 / G85 Drilling cycles (continued)

Positioning speed

The pre-positioning of the axes takes place at rapid traverse. When using polar coordinates programming with interpolation mode G02 or G03 set, positioning is at the programmed feed rate. It is therefore good policy to specify the feed rate with parameter P32.

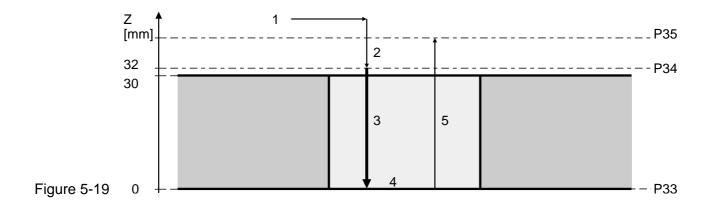
Effect of G91 incremental dimensions

Using incremental dimensions, the positioning axes (XY with G17, ZX with G18, YZ with G19) are traversed in incremental mode. The specified coordinates are always taken as absolute for the characteristics (Z, R, K).

Effect of G66

A programmed G66 is effective throughout the complete drilling cycle.

Effect of G63/G64


The function, when set, is retained throughout the complete drilling cycle. The tapping cycle G84 automatically sets G63 for period of the in-feed traverse.

Effect of other additional functions

Other additional functions are effective in a block with travel information (cycle is executed) before or after the travels that are defined in the cycle.

5.3.1 G81 Drilling with return at rapid travers

Meaning of the parameters

P30	Free cutting time	Turn back time of the spindle after achieving the drilling depth
P32	Drilling feed	
P33	Drilling depth	
P34	Anticipation plane	Safety margin of the processing upper edge
P35	Retreat plane	To go around of obstacles in the setting axis

5.3.1 G81 Drilling with return at rapid travers (continued)

Example

N20	G56	G00	X0	Y0	Z100	S1200	F1500	M03	T01	M16
N30	G81	Z80	P30:	1	P32:800	P33:0	P34:32	P35:60		
N40	M05									

Sequence plan

- 1 Switch on spindle (M03, M04) and position X and Y axis in rapid traverse.
- 2 After reaching the X and Y position, position the Z axis to the anticipation plane (P34) in rapid traverse.
- 3 After reaching the anticipation plane the Z axis is traversed at working feed rate (P32) to the drilling depth (P33).
- 4 After reaching the drilling depth any possibly programmed free cutting time (P30) is awaited.
- 5 After it the Z-axis in rapid traverse moves on the retreat plane (P35) and afterwards the spindle is switched off (M05).

5.3.2 G83 Deep-hole drilling with constant setting depth

If the parameter P39:0 or is not programmed, the programmed drilling depth (P33) by repeated constant setting depth of the active drilling depth is achieved.

The active drilling depth is (P33 - P34) * n / P36, however n = 1, 2, ... (settin depth = stroke) is.

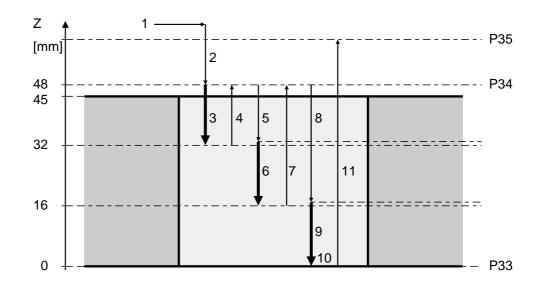


Figure 5-20

Meaning of the parameters

P30 P32 P33	Free cutting time Drilling feed Drilling depth	Turn back time of the spindle after achieving the drilling depth
P34	Anticipation plane	Safety margin of the processing upper edge
	• •	
P35	Retreat plane	To go around of obstacles in the setting axis
P36	No. of strokes	constant setting depth = $(P33 - P34) / P36$
P38	Safety margin	presetting = 1mm
P39	Gradual decrease	0 or - = off

5.3.2 G83 Deep-hole drilling with constant setting depth (continued)

Example

 N20
 G56
 G00
 X0
 Y0
 Z100
 S1200
 F1500
 M03
 T01
 M16

 N30
 G83
 Z80
 P30:1
 P32:800
 P33:0
 P34:48
 P35:60
 P36:3
 P38:1
 P39:0

 N40
 M05
 ...

 <

Sequence plan

- 1 Switch spindle on (M03, M04) and X and Y axis in rapid traverse position.
- 2 After achieving the X and Y position the Z-axis runs in rapid traverse on those anticipation plane (P34).
- 3 After achieving the anticipation plane (P34) the Z axis with working feed moves (P32) to the 1. drilling depth (P34 + ((P33 P34) * 1 / P36)).
- 4 After achieving the 1. drilling path the Z axis drives back in rapid traverse up to the anticipation plane.
- 5 From the anticipation plane the Z axis drives afterwards in rapid traverse up to the 1. drilling depth plus safety margin (P34 + ((P33 P34) * 1 / P36)) + P38).
- 6 The Z axis induces itself with working feed (P32) to 2. drilling depth (P34 + ((P33 P34) * 2 / P36)).
- 7 After achieving the 2. drilling depth the Z axis drives back in rapid traverse up to the anticipation plane.
- 8 From the anticipation plane the Z-axis drives afterwards in rapid traverse up to the 2. drilling depth plus safety margin (P34 + ((P33 P34) * 2 / P36)) + P38).
- 9 The Z axis induces itself with working feed (P32) to the 3. drilling depth etc. to P33.
- 10 With the achieving of the drilling depth (P33) a programmed free cutting time (P30) becomes been waiting.
- 11 Afterwards the Z axis in rapid traverse moves back on the retreat plane (P35) and afterwards the spindle is switched off (M05).

5.3.3 G83 Deep-hole drilling with degressive setting depth

If the parameter P39:1 is programmed (the input value is not determining), the programmed drilling depth (P33) by repeated, reduced setting depth (gradual decrease) of the active drilling depth is achieved.

The active drilling depth is P37-(n-1)*P36, whereby n=1, 2,.. is (nth setting depth = stroke). If P37-(n-1)*P36 \leq P36, the active drilling depth = P36 is set.

Before each setting depth checked, whether two setting depths (drilling depth calculated + P36 (gradual decrease measure)) still feasible are. If not, then the new drilling depth calculated by remainder path / 2 and executed the final two setting depths with this value.

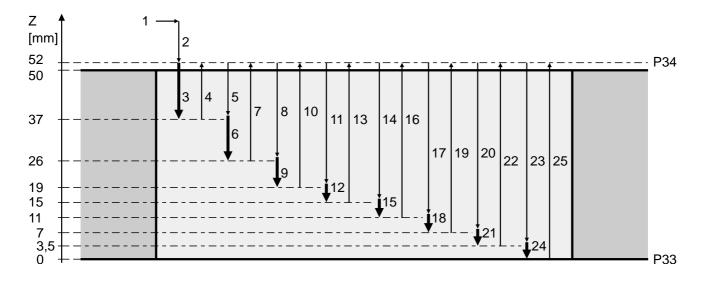


Figure 5-21

Meaning of the parameters

P32	drilling feed	
P33	drilling depth	
P34	anticipation plane	safety margin of the processing upper edge
P35	retreat plane	to the run around of obstacles in the setting axis
P36	setting depth	degressive setting depth
P37	1. stroke	degressive setting depth
P38	safety margin	presetting = 1mm
P39	gradual decrease	degressive setting depth
		1 = on

5.3.3 G83 Deep-hole drilling with degressive setting depth (continued)

Example

N20	G56	G00	X0	Y0	Z100	S1	200	F150	0 0	M03		T01	M16
N30	G83	Z80	P32:800	P33:	:0	P34:52	P36:	4	P37:1	5	P38:′	1	P39:1
	MOE												

N40 M05 ...

Sequence plan

- 1 Switch spindle on (M03, M04) and X and Y axis in rapid traverse position.
- 2 After achieving the X and Y position the Z axis runs on the anticipation plane (P34).
- 3 After achieving the anticipation plane the Z axis with working feed induces itself to 1. drilling depth (P37) on the Z position: P34 P37 = 52 15 = 37.
- 4 After achieving 1.drilling depth returns the Z axis in rapid traverse to the anticipation plane.
- 5 Of the anticipation plane in rapid traverse up to the 1. drilling depth plus safety margin (P38).
- 6 With working feed to 2. drilling depth on the Z position: 37 11 = 26 (11 = 15 4).
- 7 After achieving the 2. drilling depth to the anticipation plane back.
- 8 Of the anticipation plane in rapid traverse up to 2. drilling depth plus safety margin (P38).
- 9 With working feed to the 3. drilling depth on the Z position: 26 7 = 19 (7 = 11 4).
- 10 After achieving the 3. drilling depth to the anticipation plane back.
- 11 Of the anticipation plane in rapid traverse up to the 3. drilling depth plus safety margin (P38).
- 12 With working feed to 4. drilling depth on the Z position: 19 4 = 15 (P36:4).
- 13 After achieving the 4. drilling depth to the anticipation plane back.
- 14 Of the anticipation plane in rapid traverse up to 4. drilling depth plus safety margin (P38).
- 15 With working feed to 5. drilling depth on the Z position: 15 4 = 11 (P36:4).
- 16 After achieving the 5. drilling depth to the anticipation plane back.
- 17 Of the anticipation plane in rapid traverse up to 5. drilling depth plus safety margin (P38).
- 18 With working feed to 6. drilling depth on the z-position: 11 4 = 7 (P36:4).
- 19 After achieving the 6. drilling depth to the anticipation plane back.
- 20 Of the anticipation plane in rapid traverse up to 6. drilling depth plus safety margin (P38).
- 21 With working feed to 7. drilling depth on the Z position: 7/2 = 3,5.
- 22 After achieving the 7. drilling depth to the anticipation plane back.
- 23 Of the anticipation plane in rapid traverse up to 7. drilling depth plus safety margin (P38).
- 24 With working feed to 8. drilling depth on the Z position: 3.5 3.5 = 0.
- 25 After achieving 8. drilling depth returns the Z axis in rapid traverse to the anticipation plane.

5.3.4 G84 Thread cutting

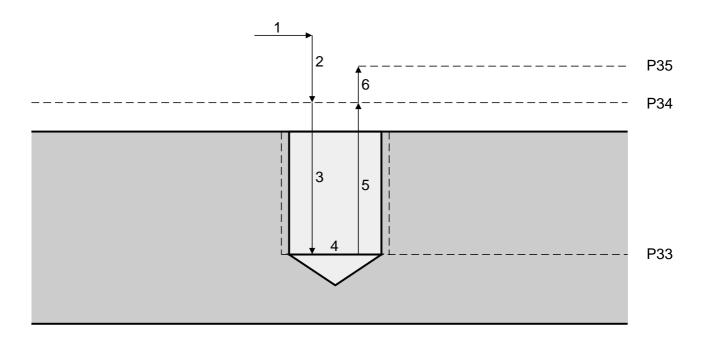
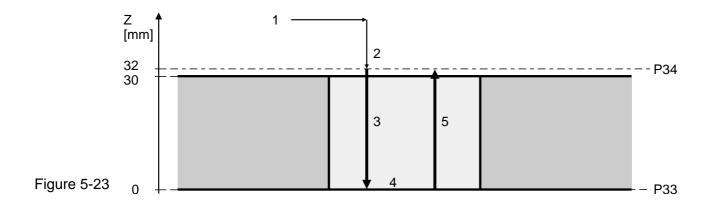


Figure 5-22

Meaning of the parameters

P31	balance fodder	P31: 1 P31: 0 or -	 = thread cutting without balance fodder = G84 standard cycle (with balance fodder)
P32 P33	thread pitch thread depth		
P34 P35	anticipation plane retreat plane	, ,	the processing upper edge ad obstacles in the setting axis

5.3.4 G84 Thread cutting (continued)


Example						
N10						
N20 G56 G00	X0 Y0	Z100	S1200	F1500	M03	T01 M16
N30 G84 Z80	P32:10	P33:20	P34:52	P35:60		
N40 M05						

Sequence plan

- 1 Switch spindle on (M03, M04) and X and Y axis in rapid traverse position.
- 2 After achieving the X and Y positions the Z axis runs on the anticipation plane.
- 3 After achieving the anticipation plane the Z axis is joined with the spindle axis and the Z axis moves to the drilling depth (P33).
- 4 With the achieving of the drilling depth the spindle rotation is turned around and the spindle reversal time (P30) recalled.
- 5 At process of the retention time the Z axis returns to the anticipation plane (P34).
- 6 With the achieving of the anticipation plane the Z-axis in rapid traverse becomes on the retreat plane (P35) driven and afterwards the spindle switched off (M05).

5.3.5 G85 Drilling with retraction at feed rate

Meaning of the parameters

P30	free cutting	g time
-----	--------------	--------

- P32 drilling feed
- P33 drilling depth
- P34 anticipation plane
- P35 retreat plane

safety margin of the processing upper edge to running around obstacles in the setting axis

5.3.5 G85 Drilling with retraction at feed rate (continued)

N10	
-----	--

N20	G56 G00	X0 Y0	Z100	S1200	F1500	M03	T01	M16
N30	G85 Z80	P30:1	P32:800	P33:0	P34:32			
N40	M05							

Sequence plan

- 1 Switch spindle on (M03, M04) and X and Y axis in rapid traverse position.
- 2 After achieving the X and Y positions the Z axis runs in rapid traverse on those anticipation plane (P34).
- 3 After achieving the anticipation plane the Z axis with working feed becomes the drilling depth (P33) moves.
- 4 With the achieving of the drilling depth a programmed free cutting time (P30) is waited for.
- 5 Afterwards retreat in the working feed to anticipation plane and becomes following spindle switched off (M05).

5.4 G86 / G87 / G88 / G89 cycle patterns

The cycle patterns serve for the repeated version of prozess cycles (boring and milling cycles). Over the programming of certain parameters the points of positioning are described, in which the prozess cycles are to be executed.

The parameters cover the definition of a target as well as the number of points of positioning. For definition of the target and the points of positioning different programming types can be used.

The partitioning of the cycle patterns takes place on the basis of geometrical criteria:

- G86 vector type processing
- G87 parallelogram type processing
- G88 grid type processing
- G89 circle type processing

The cycle patterns are block by block effective.

The parameter inputs remain against it modal effectively.

In order to avoid over regulation, all parameters are to be reset, which are not used with a programming type.

A compilation of the parameters is listed on the next side.

5.4 G86 / G87 / G88 / G89 cycle patterns (continued)

Parameter for G86 vector type processing

P100	coordinate of the 1. axis (X)
P101	coordinate of the 2. axis (Y)
P103	vector bracket related to the1. axis (X)
P104	vector length
P105	vector splitting
P106	number of points of positioning

Parameter for G87 periphery processing of a parallelogram

Vector 1	Vector2	
P100 P101 P103 P104 P105 P106	P110 P111 P113 P114 P115 P116	coordinate of the 1. axis (X) coordinate of the 2. axis (Y) vector bracket related to the 1. axis (X) vector length vector splitting number of points of positioning

Parameter for G88 grid processing

Vector 1	Vector 2	
P100	P110	coordinate of the 1. Axis @@@(x)
P101	P111	coordinate of the 2. Axis @@@(y)
P103	P113	vector bracket related to the @@@1.Achse (x)
P104	P114	vector length
P105	P115	vector splitting
P106	P116	number of points of positioning

Parameter for G89 circle processing

P120	coordinate of the 1. axis (X) of the pitch diameter focal point
P121	coordinate of the 2. axis (Y) of the pitch diameter focal point
P122	circle diameter
P123	start bracket
P124	travel bracket
P125	vector part
P126	number of points of positioning

5.4 G86 / G87 / G88 G89 cycle patterns (continued)

Messages

Messages to the cycles have numbers, which start with 8xxx. A listing is to be found in the paragraph '9,9 messages of cycles '.

Messages appear, if

- the target with a programming type by programming of additional parameters multiple is defined and no agreement is achieved.
- the target is not sufficiently determined.

In these cases the program is interrupted.

Therefore all parameters are to be reset, which are not used with a programming type for the definition of the target.

5.4 G86 / G87 / G88 G89 cycle patterns (continued)

Call of prozess cycles with cycle patterns

Together with a cycle pattern call a process cycle (boring or milling cycle) can be activated, which is then called after each positioning step in the cycle pattern.

Effectiveness of M functions

Pre path M functions are executed in the starting point A, after path M functions in the target B.

M functions, which are effective within cycles (e.g. M03, M05,..), become for each cycle call pre path or after path actively.

Start the points of positioning

Starting the respective points of positioning effected with G00. Contains the theorem a cycle call, in each point of positioning the cycle is executed. Otherwise an accurate stop (G08) is activated

5.4.1 Vector type processing

Start point and target point with G86

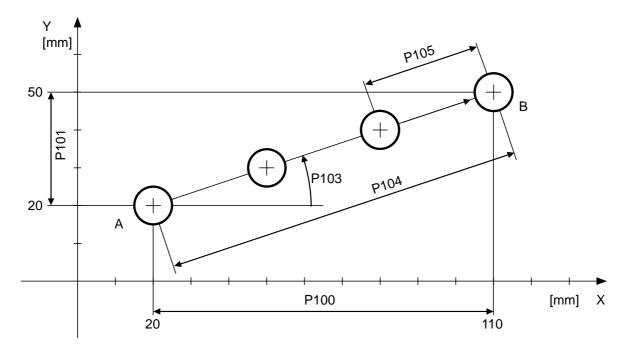


Figure 5-24A = Start point, B = Target point

Meaning of the parameters

- P100 AB coordinate of the 1. axis (X)
- P101 AB coordinate of the 2. axis (Y)
- P103 vector bracket related to the 1. axis (X)
- P104 vector length
- P105 vector splitting
- P106 number of positioning points

Example 1: Programming with AB coordinates P100 and P101 and number of points of positioning								
N10	G00	X20	Y20	Z100	S500	M03	T01	M16
N20	P100:90	P101:30	P103:-	P104:-	P105:-	P106:4		
N30	P32:800	P33:0	P34:32					
N40	G86	G81						

Example 2: Programming with vector brackets P103 and vector length P104 and number of points of positioning

N10	G00	X20	Y20	Z100	S500	M03	T01	M16
N20	P100:-	P101:-	P103:20	P104:96	P105:-	P106:4		
N30	P32:800	P33:0	P34:32					
N40	G86	G81						

Example 3: Programming with vector brackets P103 and vector splitting P105 and number of points of positioning

N10	G00	X20	Y20	Z100	S500	M03	T01	M16
N20	P100:-	P101:-	P103:20	P104:-	P105:32	P106:4		
N30	P32:800	P33:0	P34:32					
N40	G86	G81						

Process

N10	programming of the start point with X and Y
N20	programming of the target point with the parameters P100 and P101 or P103 and P104 or P103 and P105
N30	programming of the parameters of the process cycle
N40	calls of the cycle pattern and the process cycle
	Sequence of the operation: position first and then process.

Note: not used parameters are to be reset.

Programming the start point A

The start point is established by programming the X, Y. coordinates. If these coordinates have not been programmed the machine stop location coordinates are used as the starting coordinates.

Programming the target point B

Programming mode 1

The target point B is established by programming the X (AB) P100 and Y (AB) P101 coordinates.

Bx = Ax + X (AB)By = Ay + Y (AB)

Programming mode 2

The target point B is established by programming the angle P103 and the length of vector P104.

X (AB) = P104 * cosP103 Y (AB) = P104 * sinP103

Programming mode 3

The target point B is established by programming the angle P103, the vector part P105 and the number of positioning points P106.

For P106 equal to or greater than 2 the following apllies:

X (AB) = P105 * (P106-1) * cosP103 Y (AB) = P105 * (P106-1) * sinP103

For P106=0 and P106=1:

X (AB) = P105 * P106 * cosP103 Y (AB) = P105 * P106 * sinP103

Data analysis

Angel P103

≥ 0°:	angle in positive mathematical sense (left-handed rotation) referred on the positive vector of the 1. axis (X)
< 0°:	angle in negative mathematical sense (right-handed rotation) referred on the positive vector of the 1. axis (X)

 $\geq~360^\circ:~$ reduction of the angle on smaller 360°

Influence of the planes that are switched on

The sizes X and Y and the angle P103 are plane-oriented.

Plane	Axis	P103 referred on the positive vector of the axis
G17 (XY)	X Y	
		X
G18 (ZX)	Z X	
		Z
G19 (YZ)	Y Z	
		Y

Vector length P104 and vector part P105

Negative values are changed into positive values without indication.

Number of positioning points P106

Negative values are changed into positive values. Non-integer values are round down to the next smaller integer value.

Number of positioning points P106=0 The target point B (from A to B) is approached directly; eventually activated cycles are not executed.

Number of positioning points P106=1 The target point B (from A to B) is approached directly and an eventually activated cycle is executed in the target point.

Number of positioning points P106 and vector part P105

Further identifications for the programming modes 1 and 2 could be the number of positioning points P106 or the vector part P105.

When indicating the vector part P105, the number of positioning points is determined:

P106 = (AB / P105) + 1

After this, the vector part is calculated:

P105' = AB / (P106 - 1)

If the calculated number N is an integer number:

P105' = P105

If the calculated number N is not an integer number:

P105' unequal to P105

The positioning points is executed with the value T'.

5.4.2 G87 Parallelogram type processing

Start and target point with G87

Figure 5-25

Meaning of the parameters

Vector 1	Vector 2	
P100 P101	P110 P111	coordinate of the 1. axis (X) coordinate of the 2. axis (Y)
P103 P104 P105 P106	P113 P114 P115 P116	ector bracket related to the 1. axis (X) vector length vector part number of positioning points

Example [•]		gramming v number of			100, P101 a	and P110, P	111	
N10	G00	X20	Y20	Z100	S500	M03	T01	M16
N20	P100:90 P114:–	P101:30 P105:-	P110:20 P115:–	P111:40 P106:4	P103:– P116:3	P113:-	P104:-	
N30	P32:800	P33:0	P34:32					
N40	G87	G81						

Example 2: Programming with vector brackets P103, P113 and vector length P104, P114 and number of positioning points

N10	G00	X20	Y20	Z100	S500	M03	T01	M16
N20		P101:- P105:-			P103:20 P116:3	P113:60	P104:96	
N30	P32:800	P33:0	P34:32					
N40	G87	G81						

Example 3: Programming with vector brackets P103, P113 and vector splitting P105, P115 and number of positioning points

N10	G00	X20	Y20	Z100	S500	M03	T01	M16
N20	P100:– P114:–		P110:– P115:23	P111:– P106:4	P103:20 P116:3	P113:60	P104:-	
N30	P32:800	P33:0	P34:32					
N40	G87	G81						

Process

N10programming of the start point with X and YN20programming of the target point with the parameters
P100, P110 and P101, P111 or P103, P113 and P104, P114 or P103, P113 and
P105, P115N30programming of the parameters of the process cycleN40calls of the cycle pattern and the process cycleSequence of the operation:first position and then process.
Sequence of processing:Sequence of processing:for and return trip always
first vector 1 and then vector 2

Note: not used parameters are to be reset

Programming of the start point A

The start point A is determined by programming the coordinates X, Y.. If the coordinates are not programmed, the coordinates of the machine location are used as start coordinates.

Programming of the target points B and C

Programming mode 1

The target points B and C are determined by programming the coordinates X (AB) P100 / Y (AB) P101 and X (AC) P110 / Y (AC) P111.

<u>Target point B</u>	Bx = Ax + X(AB)	<u>Target point C</u>	Cx = Ax + X(AC)
	By = Ay + Y(AB)		Cy = Ay + Y(AC)

Programming mode 2

The target points B and C are determined by programming the angles P103 / P113 and vector length P104 / P114.

Target point B	X(AB) = P104 * cosP103	Target point C	X(AC) = P114 * cosP113
-	Y(AB) = P104 * sinP103		Y(AC) = P114 * sinP113

Programming mode 3

The target points B and C are determined by programming the angles P103 / P113, the vector parts P105 / P115 and number of positioning points P106 / P116.

For P106 / P116 >= 2:

<u>Point B</u>	X(AB) = P105 * (P106-1) * cosP103 Y(AB) = P105 * (P106-1) * sinP103	Point C	X(AC) = P115 * (P116-1) * cosP113 Y(AC) = P115 * (P116-1) * sinP113
For P106 /	P116 = 0 and P106 / P116 = 1 :		
Point B	X(AB) = P105 * P106 * cosP103 Y(AB) = P105 * P106 * sinP103	Point C	X(AC) = P115 * P116 * cosP113 Y(AC) = P115 * P116 * sinP113

Data evaluation

Angle P103, P113

≥ 0°:	angle in positive mathematical sense (left-handed rotation) referred on the positive vector of the x-axis
< 0°:	angle in negative mathematical sense (right-handed rotation) referred on the positive vector of the x-axis

 $\geq~360^\circ:~$ reduction of the angle on smaller 360°

Influence of the plane that is switched on:

The sizes X and Y and the angle P103, P113 are plane-oriented.

Plane	Axis	P103, P113 referred on the positive vector of the axis
G17 (XY)	X Y	
		X
G18 (ZX)	Z X	
		Z
G19 (YZ)	Y Z	
		Y

Vector length P104, P114 and vector part P105, P115

Negative values are changed into positive values without indication.

Number of positioning points P106, P116

Negative values are changed into positive values. Non-integer values are round down to the next smaller integer value.

Number of positioning points P106, P116 = 0 The target point B / C (from A to B / C) are approached directly; eventually activated cycles are not executed.

Number of positioning points P106, P116 = 1 The target points B / C (from A to B / C) are approached directly and an eventually activated cycle is executed in the target point.

Number of positioning points P106, P116 and vector part P105, P115

Further identifications for the programming modes 1 and 2 could be the number of drilling holes P106, P116 or the vector part P105, P115.

When indicating the vector part P105, P115, the number of drilling holes is determined:

P106, P116 = (AB / P105, P115) + 1

After this, the vector part is calculated:

P105', P115' = AB / (P106, P116 - 1)

If the calculated number P106, P116 is an integer number:

P105', P115' = P105, P115

If the calculated number P106, P116 is not an integer number:

P105', P115' unequal to P105, P115

The drilling pattern is executed with the value P105', P115'.

5.4.3 G88 Grid type processing

Start and target point at G88

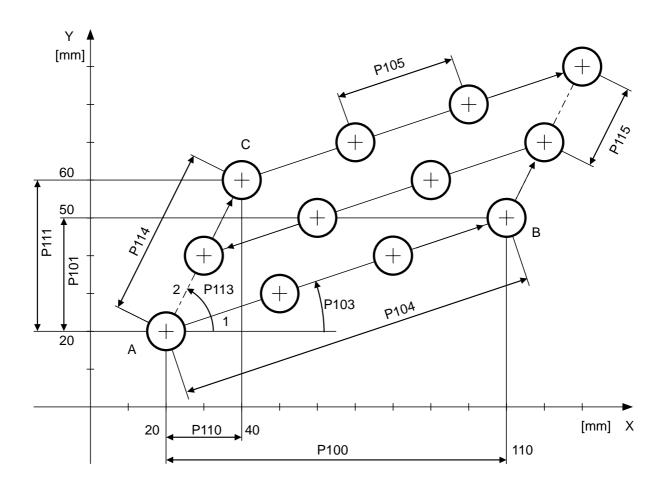


Figure 5-26

Meaning of the parameters

	Vector 1
P100P110coordinate of the 1. axis (X)P101P111coordinate of the 2. axis (Y)P103P113ector bracket related to the 1. axis (X)P104P114vector lengthP105P115vector partP106P116number of positioning points	P101 P103 P104 P105

Example		gramming v number of		ordinates P g points	100, Ρ110 ι	und P101, P	111	
N10	G00	X20	Y20	Z100	S500	M03	T01	M16
N20	P100:90 P114:–	P101:30 P105:–	P110:20 P115:-	P111:40 P106:4	P103:– P116:3	P113:-	P104:-	
N30	P32:800	P33:0	P34:32					
N40	G88	G81						
Example	vec	gramming v tor length F number of	2104, P114	brackets P g points	103, P113 a	and		
N10	G00	X20	Y20	Z100	S500	M03	T01	M16
N20	P100:– P114:46	P101:– P105:–	P110:– P115:–	P111:– P106:4	P103:20 P116:3	P113:60	P104:96	
N30	P32:800	P33:0	P34:32					
N40	G88	G81						

Example 3: Programming with vector brackets P103, P113 and vector splitting P105, P115 and number of positioning points

N10	G00	X20	Y20	Z100	S500	M03	T01	M16
N20		P101:– P105:32			P103:20 P116:3	P113:60	P104:-	
N30	P32:800	P33:0	P34:32					
N40	G88	G81						

Process

N10 programming of the start point with X and Y

- N20 programming of the target point with the parameters P100, P110 and P101, P111 or P103, P113 and P104, P114 or P103, P113 and P105, P115
- N30 programming of the parameters of the process cycle
- N40 calls of the cycle pattern and the process cycle

Sequence of the operation: first position and then process.

Sequence of processing: first with journey there first vector 1 completely and afterwards the first position on vector 2,

then with return trip vector 1 completely and afterwards the next position on vector 2,

then again with journey there vector 1 completely etc. until the final position on vector 2 achieves and the processing of vector 1 is executed

thereafter the initial position is started.

Note: not used parameters are to be reset

Programming the start point A

The start point A is determined by programming the coordinates X, Y... If the coordinates are not programmed, the coordinates of the machine location are used as starting coordinates.

Programming of the target points B and C

Programming mode 1

The target points B and C are determined by programming the coordinates X (AB) P100, Y (AB) P101 and X (AC) P110, Y (AC) P111.

<u>Target point B</u>	Bx = Ax + X(AB)	Target point C	Cx = Ax + X(AC)
	By = Ay + Y(AB)		Cy = Ay + Y(AC)

Programming mode 2

The target points B and C are determined by programming the angles P103, P113 and vector length P104, P114.

Target point B	X(AB) = P104 * cosP103	Target point C	X(AC) = P114 * cosP113
	Y(AB) = P104 * sinP103		Y(AC) = P114 * sinP113

Programming mode 3

The target points B and C are determined by programming the angles E1 / E2, the vector parts T1 / T2 and number of drilling holes N1 / N2.

For N >= 2:

<u>Point B</u>	X(AB) = P105 * (P106-1) * cosP103 Y(AB) = P105 * (P106-1) * sinP103	Point C	X(AC) = P115 * (P116-1) * cosP113 Y(AC) = P115 * (P116-1) * sinP113
For P106,	P116 = 0 and P106, P116 = 1:		
<u>Point B</u>	X(AB) = P105 * P106 * cosP103 Y(AB) = P105 * P106 * sinP103	Point C	X(AC) = P115 * P116 * cosP113 Y(AC) = P115 * P116 * sinP113

Data evaluation

Angle P103, P113

≥ 0°:	angle in positive mathematical sense (left-handed rotation) referred on the positive vector of the x-axis
< 0°:	angle in negative mathematical sense (right-handed rotation) referred on the positive vector of the x-axis

 $\geq~360^\circ:~$ reduction of the angle on smaller 360°

Influence of the plane that is switched on:

The sizes X and Y and the angle P103, P113 are plane-oriented.

Plane	Axis	P103, P113 referred on the positive vector of the axis			
G17 (XY)	X Y				
		X			
G18 (ZX)	Z X				
		Z			
G19 (YZ)	Y Z				
		Y			

Vector length P104, P114 and vector part P105, P115

Negative values are changed into positive values without indication.

Number of drilling holes P106, P116

Negative values are changed into positive values. Non-integer values are round down to the next smaller integer value.

Number of drilling holes P106, P116 = 0 The target points B / C (from A to B / C) are approached directly; eventually activated cycles are not executed.

Number of drilling holes P106, P116 = 1 The target points B / C (from A to B / C) are approached directly and an eventually activated cycle is executed in the target point.

Number of drilling holes P106, P116 and vector part P105, P115

Further identifications for the programming modes 1 and 2 could be the number of drilling holes P106, P116 or the vector part P105, P115.

When indicating the vector part P105, P115, the number of drilling holes is determined:

P106, P116 = (AB / P105, P115) + 1

After this, the vector part P105, P115 is calculated:

P105', P115' = AB / (P106, P116 - 1)

If the calculated number P106, P116 is an integer number:

P105', P115' = P105, P115

If the calculated number P106, P116 is not an integer number:

P105', P115' unequal to P105, P115

The drilling pattern is executed with the value P105', P115'.

5.4.4 G89 Circle type processing

Start and target point at G88

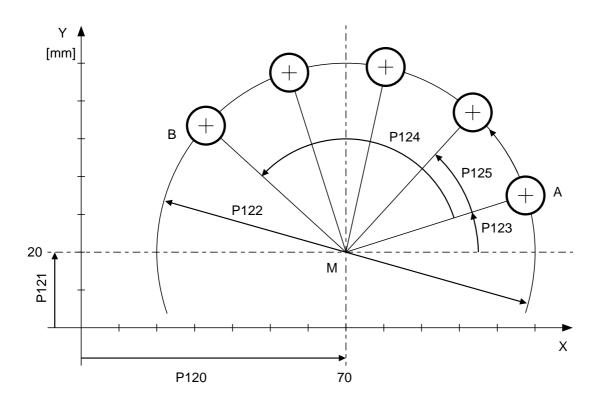


Figure 5-27

Meaning of the parameters

- P120 Coordinate of the 1. axis (X) of the positioning points
- P121 Coordinate of the 2. axis (Y) of the positioning points
- P122 Pitch circle diameter
- P123 Start angle
- P124 Travel angle
- P125 Vector part
- P126 Number of positioning points

Example 1: Programming with centre coordinates P120, P121, circle diameter P122, start brackets P123 and travel bracket P124 and number of positioning points

N10	G00 M03	Z100 T01	S500 M16		
N20	P120:70	P121:20	P122:100 P123:18	P124:120 P125:	P126:5
N30	P32:800	P33:0	P34:32		
N40	G89	G81			

Example 2:	Programming with centre coordinates P120, P121,
	circle diameter P122, start brackets P123 and vector part P125
	and number of positioning points

N10	G00 M03	Z100 T01	S500 M16			
N20	P120:70	P121:20	P122:100 P123:18	P124:	P125:30	P126:
N30	P32:800	P33:0	P34:32			

N40 **G89** G81

process

- N10 programming of the start point with P120, P121, P122 and P123
- N20 programming of the target point with the parameters P120, P121, P122, P123 and P124 or P120, P121, P122, P123 and P125
- N30 programming of the parameters of the process cycle
- N40 calls of the cycle pattern and the process cycle

Sequence of the operation: first position and then process.

- Sequence of processing: dependent on the programmed type of interpolation G00, G01 or G02, G03 become the particulars positions straight linear or circular interpolates started.
- Note: not used parameters are to be reset

Programming the start point A

The starting point A always has to be determined by programming identifications at G89, i.e. the pitch circle centre point P120, P121, the pitch circle radius P122/2 and the starting angle P123.

Programming the target point B

Programming mode 1

The target point B is determined by programming the travel angle P124. Bx = P120 + (P122/2) * cos(P123+P124)By = P121 + (P122/2) * sin(P123+P124)

Programming mode 2

The target point is determined by programming the number of positioning points P126 and the vector part P125. $Bx = P120 + (P122/2) * \cos(P123 + (P126-1) * P125)$ $By = P121 + (P122/2) * \sin(P123 + (P126-1) * P125)$

P124 = (P126-1) * P125

Data evaluation

Angle P123

≥ 0°:	angle in positive mathematical sense (left-handed rotation) referred on the positive vector of the x-axis
< 0°:	angle in negative mathematical sense (right-handed rotation) referred on the positive vector of the x-axis
≥ 360°:	reduction of the angle on smaller 360°

Influence of the plane that is switched on:

The sizes X and Y and the angle P123 are plane-oriented.

Plane	Axis	P123 referred on the positive vector of the axis
G17 (XY)	X Y	
		X
G18 (ZX)	Z X	
		Z
G19 (YZ)	Y Z	
	2	Y

Vector part P125

Negative values are changed into positive values without indication.

Number of positioning points P126

Negative values are changed into positive values. Non-integer values are round down to the next smaller integer value.

Number of positioning points P126 = 0The target point B (from A to B) is approached directly; eventually activated cycles are not executed.

Number of positioning points P126 = 1The target point B (from A to B) is approached directly and an eventually activated cycle is executed in the target point.

Number of positioning points P126 and vector part P125

Further identifications for the programming modes 1 and 2 could be the number of positioning points P126 or the vector part P125.

When indicating the vector part P125, the number of positioning points P126 is determined:

P126 = (P124 / P125) + 1

After this, the vector part is calculated:

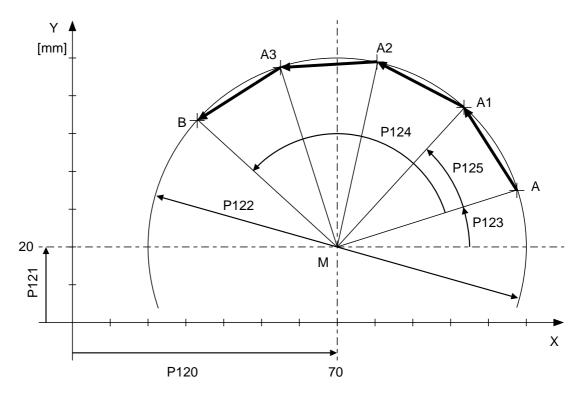
P125' = P124 / (P126-1)

If the calculated number P126 is an integer number:

P125' = P125

If the calculated number N is not an integer number:

P125' unequal to P125

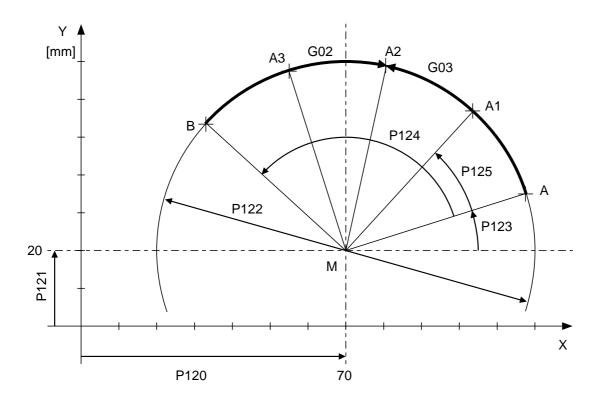

The drilling pattern is executed with the value P125'.

Starting the points of positioning (G89)

Starting of the points of positioning depends on the programmed type of interpolation.

G00 or G01 actively

Figure 5-28


The positions (A1, A2, A3 and B) are started with G00.

The sign of the travel bracket P124 or, if this does not indicated, the sign of the vector part P125 determines, whether the circle is anti-clockwise rotation or is clockwise rotation processed:

Positive sign of the bracket: Minus sign of the bracket: anti-clockwise rotation, clockwise rotation.

G02 or G03 actively

The positioning points are started with G02 or G03 and max. programmable feed speed.

Two cases are to be differentiated:

The travel bracket is positive (anti-clockwise rotating)

With G03 also the positioning direction is positive. With G02 the positioning direction is negative (moving in opposite directions to the travel bracket).

The travel bracket is negative (clockwise rotatingly)

With G02 also the positioning direction is positive. With G03 the positioning direction is negative (moving in opposite directions to the travel bracket).

5.5 Customer specific cycles

A cycle is a program that generates certain repeated sequences.

For user-specific cycles, these sequences are defined in a Z-program.

```
Example: Z1001
N10 ...
.
.
N40 P500 : P500+1
.
.
N60 M30
```

The defined cycle can be started then in a machining program with a G-function. The G-function must have the same number as the Z-program.

Example: P2000 N10 N60 P500 : 2 G1001 . . N90 M30

The G-function numbers can be selected arbitrarily except those numbers that are already reserved for other functions.

Input variables can be transmitted to the Z-program with parameters. The parameter numbers P500 to P4999 are free for the user. P0 to P499 is reserved for BWO-cycles. If the BWO-cycles are not used, they are also free for the user.

Additional functions to the operating system Additional functions could be implemented with a DLL (Dynamic Link Library) that is written in programming language C.

6. Supplementary functions

6.1	Program-controlling supplementary functions	
6.1.1	M00 Measuring stop	
6.1.2	M01 Synchronization	
6.1.3	M02 Sub-routine skip back	
6.1.4	M06 / M16 Tool functions	
6.1.5	M23 Unconditional skip with statement of block number	6 - 7
6.1.6	M24 / M25 Program loops	6 - 8
6.1.7	M26 Supervision 'clear remaining travel'	6 - 9
6.1.8	M28 Unconditional skip in sub-routine with statement of block number	6 -10
6.1.9	M29 End of program with automatic program repetition	6 -11
6.1.10	M30 End of program	6 -12
6.2	Machine controlling supplementary functions	6 -13

6.1 **Program controlling supplementary functions**

- M00 Measuring stop
- M01 Synchronization
- M02 Sub-routine skip back
- M06 / M16 Tool functions
- M23 Unconditional skip with statement of block number
- M24 / M25 Program loops
- M26 Supervision 'clear remaining travel'
- M28 Unconditional skip in sub-routine
- M29 End of program with program repetition
- M30 End of program

If parameter skips are programmed in the NC block, they are treated with priority!

6.1.1 M00 Measuring stop

Program run is shut down and spindle stop becomes effective after completion of the block in which M00 is programmed. Automatic mode is possible after Auto-Stop.

With pressing the key 'Start' the NC program continues and the spindle is switched on.

Example: X37,95 Y12,76 M00

After approaching the coordinates X and Y the program sequence is interrupted.

The function operates block by block.

M00 may only be programmed when the tool-radius-contour correction (G40) is switched off.

6.1.2 M01 Synchronization

The function M01 causes a synchronization of program analysis and real time machining. M01 operates block by block and is executed after the path machining.

When processing a program the block analysis of the real time runs some blocks ahead.

Example: N10 G01 F1000 X10 Y10 N20 X20 N30 X100 N40 X50 N50 P100:20

In this NC program the axes traverse in the current block N10, while the block analysis is already executing the parameter instruction of block N50.

This running ahead of the block analysis can be stopped through programming M01. IF M01 is programmed in a block, the block analysis at the block end is waiting until this block is really worked.

6.1.3 M02 Sub-routine skip back

After processing the block in which M02 is programmed, a skip back into the calling programm is executed in a sub-routine in the calling program (after traverses, without stop).

CNC 900 SUPPLEMENTARY FUNCTIONS

6.1.4 M06 / M16 Tool functions

- M06 Tool change
- see paragraph 7.1 Tool functions M16 Tool data call

6.1.5 M23 Unconditional skip

With M23 the program is continued at the indicated program - and block number.

The function operates block-by-block.

The skip is programmed with M23 and indicating program - and block number, e.g.

- M23.110 skip to block 110 or
- M23.10.110 skip in program 10 to block 110.

6.1.6 M24 / M25 Program loop

M24 Program loop start

With loop programming program parts of the same kind can be repeated.

The program loop start is programmed with M24 and indicating the runs, e.g. M24.07 (7 runs of the loop). The loop number is to be found in P8840.

It has to be considered, that the block, in which the program loop stard is to be found (M24...), does not belong to the program loop.

The function M24 operates block-by-block.

M25 Program loop end

This function marks the end the program loop. After processing the block in which M25 is programmed, the program skips back to the loop start. If all runs are worked, the program is continued with the block following on M25.

The function operates block-by-block.

6.1.7 M26 Supervision 'Clear remaining travel'

The supervision 'clear remaining travel' is active.

The function operates block-by-block and effective before axes movements.

From M26 on the interpolator supervises the signal 'clear remaining travel' from the PLC and executes the command. If the signal lines up already, the travel is cleared immediately.

6.1.8 M28 Unconditional skip in sub-routine

Program parts, which are repeated in a program, can be written as sub-routine. Also each arbitrary program can be called up as sub-routine, e.g.

M28.300 starts program 300.

The control remembers the skip address and continues the calling program at the block following on M28, if the sub-routine is finished.

The sub-routine skip back can be programmed with M02.

A nesting of the sub-routines is possible four times.

The function M28 operates block-by-block.

6.1.9 M29 End of program and program repetition

After processing the block in which M29 is programmed, the program is finished, executed a skip at the beginning of the program and the program is restarted automatically. The preset G - functions become effective again.

IF M29 stands at the end of a program, which was called up as sub-routine, a sub-routine skip back is executed.

The function operates block-by-block.

6.1.10 M30 End of program and skip to program start

After processing the block in which M30 is programmed, the program is finished and a skip to the beginning of the program is executed (after traverse, with stop). The preset G - functions become effective again. Besides that Spindle Stop and Coolants off become active.

The function operates block-by-block.

CNC 900 SUPPLEMENTARY FUNCTIONS

6.2 Machine controlling supplementary functions

Area: 0..999

There may be programmed 8 M-functions per NC block.

The M-functions can be defined as

- before traverse - after traverse
- with stop
- with skip
- (Skip-M-functions are always before traverse with stop, see q1050 .. 1099.)

At M-functions with skip, the skip target can exist either only of the block number or of program number and block number

e.g.:

M41.2.10 If M-function confirmed, skip to program 2 block number 10 If M-function confirmed, skip to block number 10 M41.10

If the M-function is confirmed, it is skiped to the indicated block number and/or in the indicated program with indicated block number.

At a skip impending ways are deleted and the NC block buffer is cleared.

With no confirmation the NC block interpreter switches over to the next NC block.

7. Tool

7.1	Tool functions	7 - 2
7.2	Tool correction	7 -11
7.3	Principle of correction	7 -15
7.4	Change of tool radius	7 -18
7.5	Swichting on the correction	7 -19
7.6	Switching off the correction	7 -21
7.7	Special cases at inner contours	7 -23

7.1 Tool functions

General to the tool data

- The tool length in the offsetting record is always taken into consideration in autooperation (according to G17 / G18 / G19 in 3. defined axis).
- In the case of NC program end or NC program abort the spindle tool data becomes theorem into the offsetting record copies.
 Thus tool offset compensations of the NC program (M16) become ineffective.
 When starting of the next NC program is immediately the length of the spindle tool actively (offsetting data).
- The tool length works as shift. The indicator position is the programmed position from the NC program. The tool length adds itself in the sum shift parameter (P12155).
- The who things radius works as correction.
 The indicator position is smaller or larger than the programmed position from that NC program.

T Selection of the group of tools in the NC program

The tool number T is identified and treated with in the analysis. In the tool data array a browsing is started after the suitable group of tools.

When finding the programmed group of tools this record is copied into the PLC tool data array (P8050) and transferred thus to the PLC.

A transfer to the PLC finds however only,

- the first T call in the NC program or

- a modification of the T number.

Special case

If a tool is called, which already is in the spindle (P8100), then the PLC tool data array is filled not from the tool data pool, but the spindle tool record is only copied into the PLC tool record.

Example N10 T5

T extension

For special customer adaptations the T function permits a covered subroutine reference. With each analyzed T, the NC memory is scanned for a Z5. If Z5 exists, then this cycle is covered called. With the call of Z5 the PLC Interface (P8050...) with the new data is described.

Tool definitions t...

Existed in the system no tool tools, then can over the identifier, 't:', 'tr:', 'tq:', 'tl:' tool data to be set, with which a radius correction (G41/42) activated afterwards operates. These tool definition can be combined at will in a NC block.

With all functions the tool offsetting record is described (P8150...); i.e. there is temporary tool datas, which are overwritten at a Tx M6 or Tx M1 or at the program end.

For activating everything of these tool tools is not necessary M16.

't: '-Tool radius correction

With the programming of 't:' in the offsetting record only the radius correction of the tool (P8162) is described and activated.

A G41/42 programmed afterwards uses the total of P8160 and P8162 as correction radius! The quadrant and other tool datas remain unchanged!

This function is practical, in order to correct past tool radius.

Example:

 N10
 ...

 N20
 t:0.5
 {modification of the past tool radius }

 N30
 G1 X100 Y100 G42
 ...

' tr: ' - Tool radius

With the programming of 'tr:' in the offsetting record the radius correction of the tool (P8162) is set to zero and the tool radius (P8160) with the programmed value is described. The quadrant and other tool data remain unchanged!

Example: N10 ... N20 tr:50 { N30 G1 X100 Y100 G42 N40 ...

{ setting the tool radius }

Tool definitions t...

'tl:' - Tool length

With the programming of 'tl:' in the offsetting record the length correction of the tool (P8163) is set to zero and the tool length (P8161) with the programmed value is described. The quadrant and other tool datas remain unchanged!

Example: N10 ... N20 tl:80 N30 G1 X100 Y100 N40 ...

{ setting the tool length }

' tq: ' - Tool quadrant

With the programming of 'tq:' in the offsetting record the tool quadrant (P8164) is set or modified. Other tool datas remain unchanged!

Example: N10 ... N20 tr:5 tq:4 {setting a tool radius with quadrant } N30 G1 X100 Y100 G42 N40 ...

M06 Tool change

With M06 the tool change is started up. M06 with synchronisation and stop must be defined (see P11051 or P8351).

2 possibilities the tool change consist to execute:

- 1. Tool change in the cycle
- 2. Tool change completely in the PLC implements.
- to 1. If the theorem analysis a M06 identifies, it is checked whether the cycle 6 (Z6) exists. There is Z6, then this sub-routine is called, in that the tool change one handles. The actual tool change may not then in the PLC any more with M06 to be executed. But other M function numbers must be used. At the program end of Z6 from the system synchronized and following will become the tool datas taken into consideration (M16).
- to 2. If Z6 does not exist, then this means that the PLC with the reception of M06 that Tool change executes. After acknowledgement of M06 the tool datas become taken into consideration (M16).

Process of a tool change over PLC (M06 with stop and synchronisation defines):

PLC receives M06

- If a tool is in the spindle, old tools placing. This is closed, as P8047 with the tool place is described.
- Subsequently, the tool (T) is changed.
 (tool number and tool place were transferred in the tool data theorem).
 If the change is final, this is acknowledged with the M function-acknowledgement.

Beforehand P8045 must be however still described.

Course of a tool change with Z6

Z6 is called up as sub-routine with M06.

Example: Z6

N10 P8047:1	store tool data
N20 P8045:1	activate tool data
N30 M30	

N10 P8047:1 Store tool data

The tool data theorem in the spindle tool data theorem (P8100) is retransferred into the tool data array. If the spindle tool datas are from T0, one does not retransfer.

N20 P8045:1 Activate tool data

The tool data theorem (P8050...) becomes into the spindle tool data theorem (P8100...) and the offsetting record (P8150...) copies.

N30 M30

With the program end of Z6 the tool data are activated (M16).

7.1 Tool functions

Example for course of a tool change with Z6

NC main program N... N... N100 T3 M6 Call up tool change N.. N...

When calling up Z6, the parameter area P8050..8099 is actualized with the new tool data of T3.

Z6

N10 _wzwxl_x_pos := 1000; _wzwxl_y_pos:= 300;	Definition of the position for laying down / picking up
N30 P8100=P8050.200	Check if tool-old = tool-new
N40 P8100=0.100	Check if a tool is in the spindle If not: do not store tool data
N50 G00 X:_wzwxl_x_pos Y:_wzwxl_y_pos M01	Approach position for lay down P8120:
N60 P8047:1	Store tool data (Trigger)
N100 P8050=0.200	Check if tool should be picked up. No tool picking up at T0.
N120 G00 X:_wzwxl_x_pos Y:_wzwxl_y_pos M01	Approach position for picking up
N140 P8045:1	Activate tool data
N200 M30	

#

M16 Tool data call up

M16 with T in the NC block e.g.: N10 T1 M16

During pre-analysis time the corresponding tool data block from the tool data block array is loaded into the actual settlement data block with M16 according to the programmed T-number. At T0 the settlement data block is cleared.

M16 without T in the NC block e.g.: N10 M16

The settlement data block is activated with M16.

The current spindle tool data block is not changed through M16. M16 can be transmitted to the PLC, if desired. This is not necessary for the function of the tool data call up. The tool radius is activated with calling up G41 / G42 (tool radius path correciton left / right). The tool - length becomes active at the block end.

e.g.: N100 T2 M16	tool data call up
:	
N120 X100 Y100 G42	call up tool radius path correction

7.2 Tool correction

The workpiece programming with tool correction enables the application of tools with different dimensions (example: regrinding of tools).

The dimensions of the tools are indicated with the corresponding T-address. The tool data are calculated by the control on the target path.

This enables the programming of graphically determined workpiece correction and results that the time-costly calculation of base for the cutter center point path is discontinued.

The correction method used for the BWO-control is composed of a combination between intersection - and blending radius correction.

The tool correction is only accomplished in blocks, in which the traverse to be proceeded is unequal to zero (travel differences unequal to zero at straights, radius unequal to zero at circles). The blocks with travels equal to zero are executed at the intersection point or at the end of the inserted transition circle. The amount of one after another lying blocks with travels equal to zero is limited on 12.

Outer contour

.

Completion of the tool correction at the beginning of the transition circle

completion of the tool correction at the intersection point

Inner contour

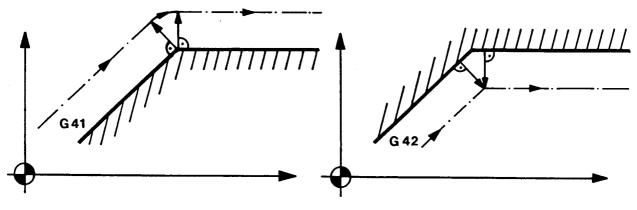


Figure 7-1 Completion of the tool correction

7.2 Tool correction (continued)

Tool dimensions

With M06 / M16 the stored tool dimensions are activated and the tool correction is accomplished.

The tool dimensions of the active tool data are calculated into the position display. Thereby the position display of the tool axis is the same like the programmed target position, if the axis is driven in position.

The tool axis is determined by the active plane selection of the interpolation main plane. See also G17, G18, G19.

Tool radius

With the traverse conditions G40, G41 and G42 is determined, whether and how the tool radius correction has to be calculated.

Any correction is stopped with G40. A preceded G41 or G42 is cancelled.

G41 means, that the tool is found on the left side of the programmed path (seen in feed direction). G42 means, that the tool is found on the right side of the programmed path (seen in feed direction).

The tool radius can be entered positive or negative.

At a positive tool radius the programmed tool correction is calculated.

At a negative tool radius the programmed tool correction is changed: G41 becomes G42 and G42 becomes G41.

The tool radius correction is executed in the indicated interpolation plane. Before changing the interpolation plane correction must be cancelled with G40.

The tool correction can calculate different tool radius, which can be called up with different T-functions.

CNC 900 TOOL

Tool correction (continued) 7.2

Position of the tool

The relative position (quadrant) between tool and workpiece is indicated in P8164.

Definition of the quadrants

P8164 = 1 P8164 = 0		quadrant 1 to 8 no quadrant correction SP = SM	SP P8164 = 2	P8164 = 1 SM°
SP	theoretica	l tool peak	\backslash	
SM	radius cer	ter point ot the tool	SP	SM SM P8164 = 4
Figure 7-2	2		P6164 = 7	P8164 = 6 P8164 = 5 SM_{O} SP M P8164 = 8

7.2 Tool correction (continued)

Special case: Switch off the correction with changing the plane

The switching off of the correction (G40) in a block with travel equal to zero followed by a block with changing plane (G17, G18, G19) leads to wrong positioning of the axes.

Example: N200 G40 Z100

N210 G18 X20 Y50

switching off of the correction in plane G17 and travel equal to zero. position is approached wrong.

Solution: N200 G40 X40 Y100 Z100

N210 G18 X20 Y50

switching off of the correction in plane G17 and travel unequal to zero. position is approached right.

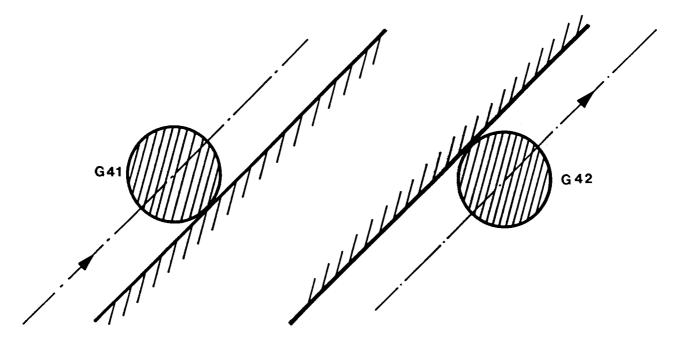
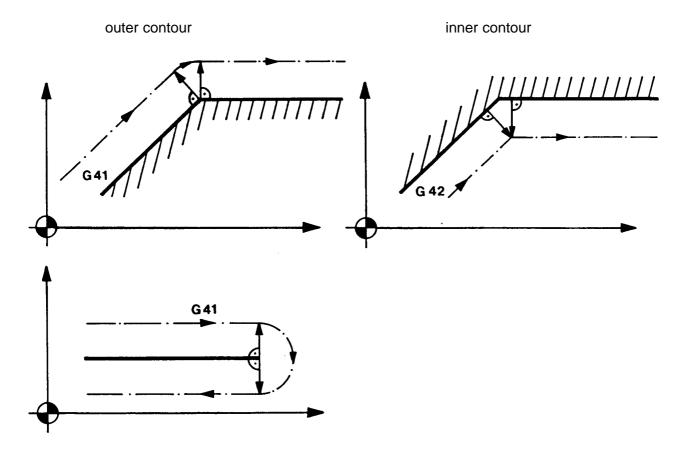


Figure 7-3 Definition of G41 and G42

7.3 Correction principle


If the correction is switched on, the path correction is always accomplished with the same principle:

The corrected path is displaced for the amount of the indicated radius value in reference to the programmed path. The thereby emerging path end points are determined by the cutting of the corrected path elements.

At the outer contour and at changing the correction a transition radius is inserted. At the inner contour the intersection is calculated.

The principle of the correction is explained in the following sketches:

Transition straight - straight

CNC 900 TOOL

7.3 Correction principle (continued)

Transition straight - circle (also for circle - straight)

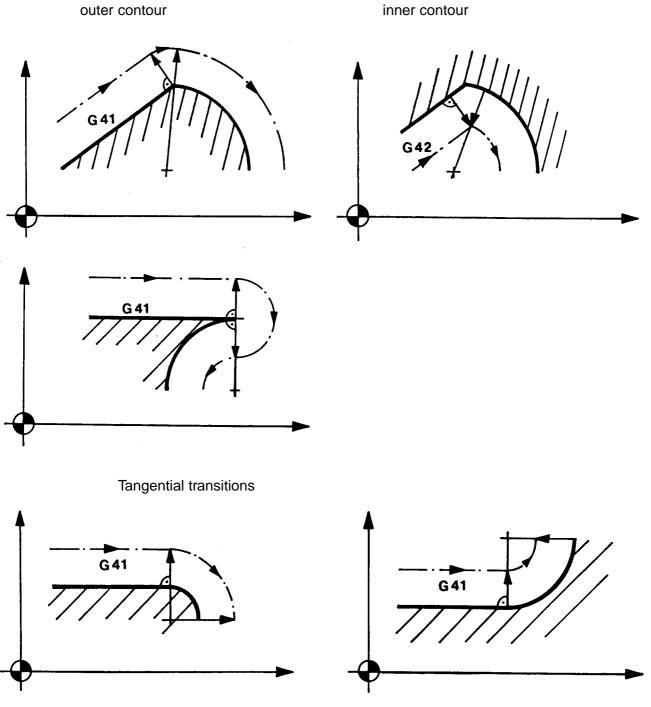
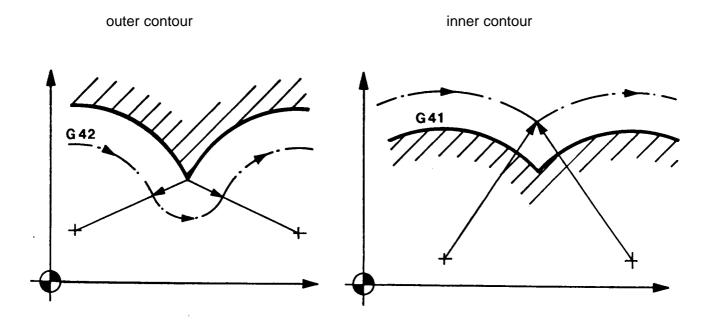
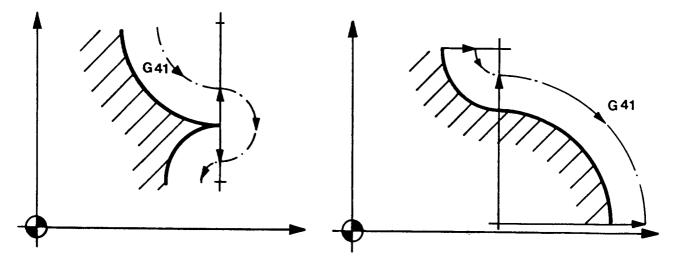



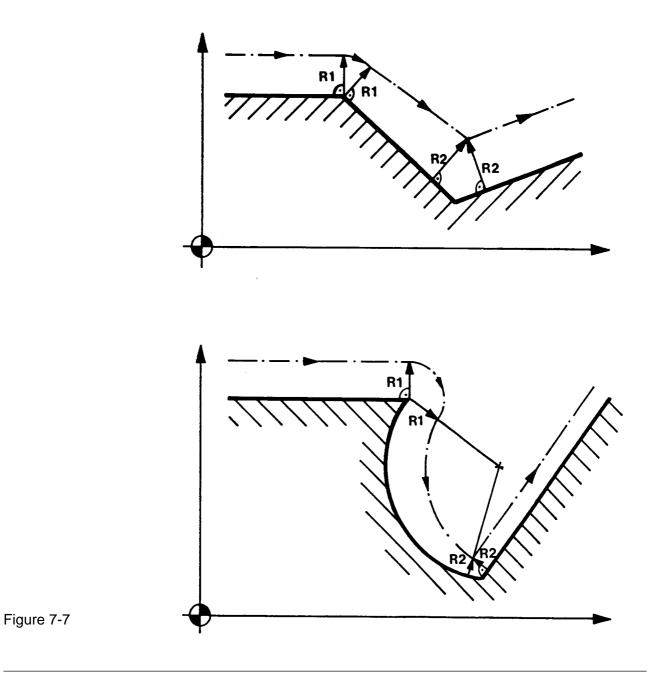
Figure 7-5

7.3 Correction principle (continued)

Transition circle - circle

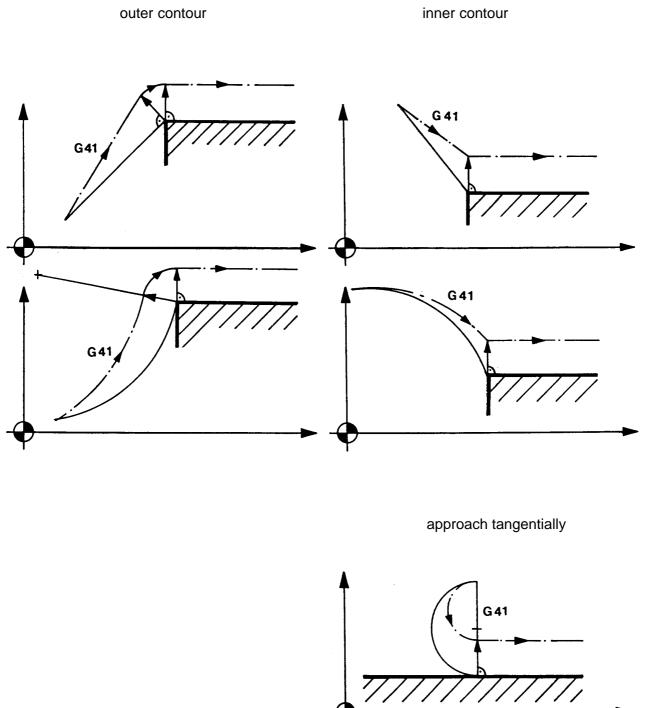
Tangential transition




Figure 7-6

7.4 Change of the tool radius

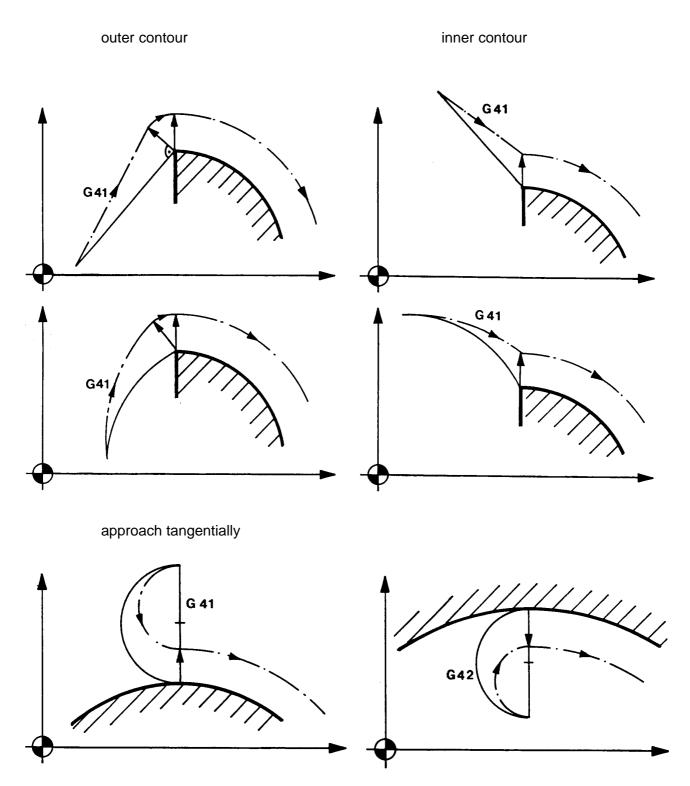
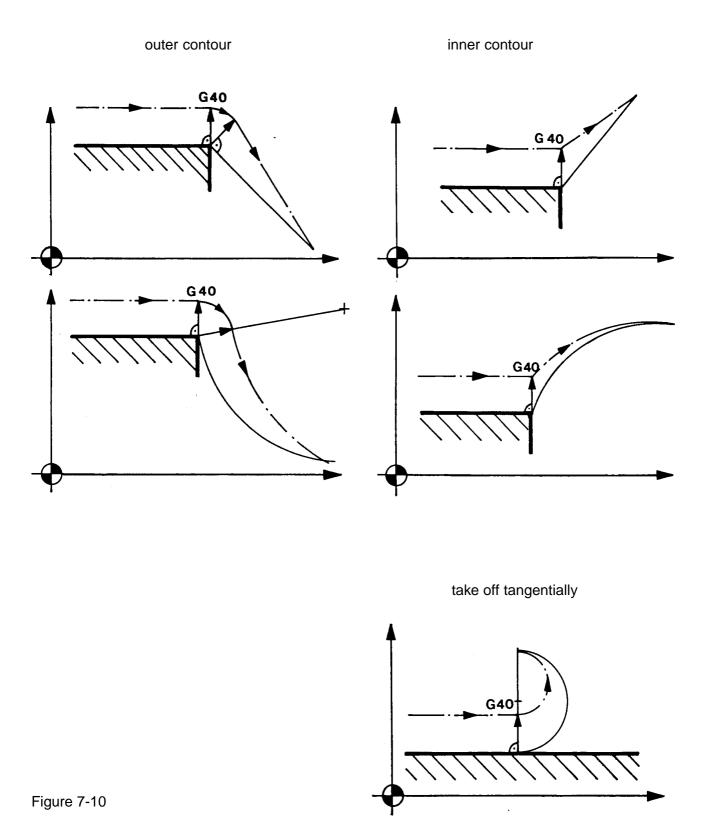
When changing the tool radius, the intersections and transition circles are calculated first with the old radius.

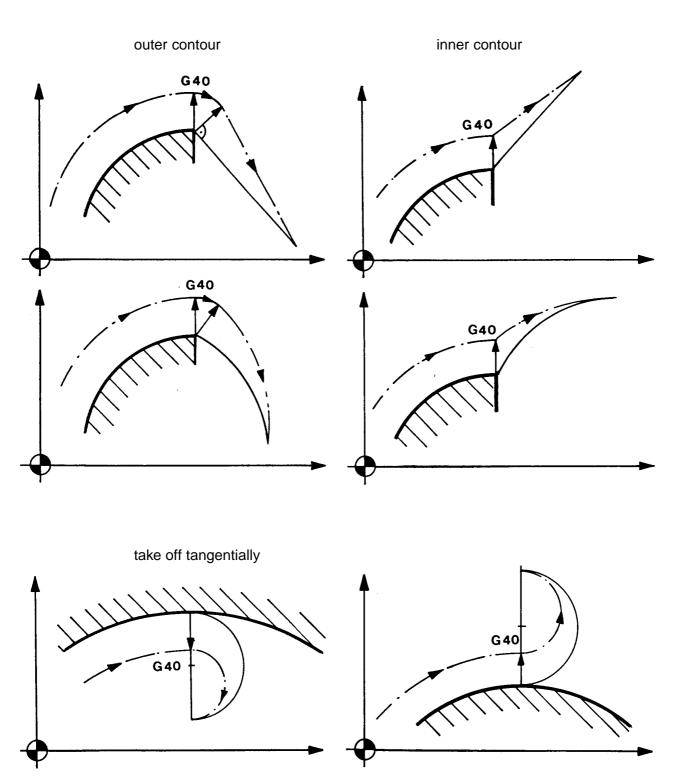

The starting point (old radius) and the end point (new radius) of the corrected path do no more have the same distance to the programmed path. This is valid for straights and circles.

7.5 Switching on the correction

The programmed correction is clculated in each block.

7.5 Switching on the correction (continued)


Figure 7-9

7.6 Switching off the correction

7.6 Switching off the correction (continued)

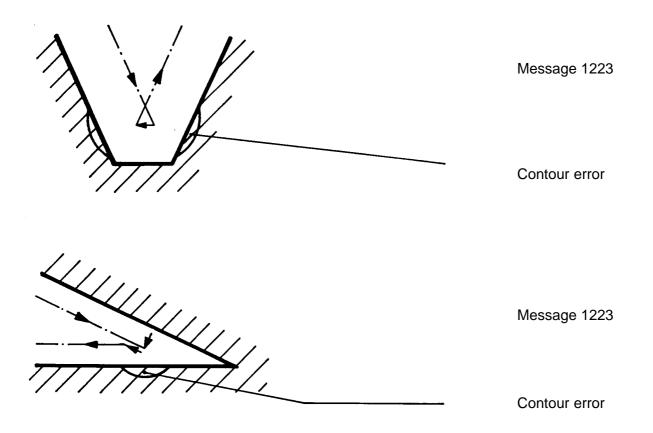
7.7 Special cases at inner contours

At inner contours undesirable contour errors can appear. In these cases the messages 1416 and 1420 are given out. The program is not interrupted.

The causes of these errors are:

- 1416 Too short travels in comparison with the dimension of the tool radius.
- 1420 Intersection not possible.

In the following figures the response of the control is illustrated for different cases.



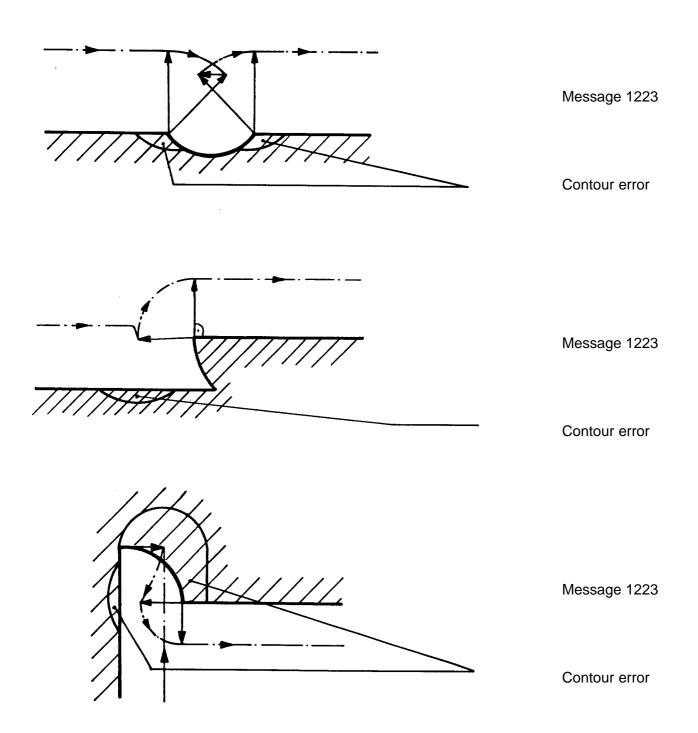


Figure 7-12

Figure 7-13

8. Parameters

8.1	General		8-3
8.2	Systeminitialisation	q1	8-12
8.3	Channeldescriptor	q100	8-20
8.4	Operating mode network	q903	8-38
8.5	Fixed defined channel parameters		8-40
	Cycles (only if to be used, otherwise freely available)	P11	8-40
	Systeminternal parameters	P7000	8-45
	ZSM control parameters	P7950	8-46
	Tooldatainterface	P8040	8-52
	Definition of the M functions	P8250	8-62
	Messages	P8500	8-66
	Channel barriers /information	P8510	8-67
	Defaults	P8600	8-73
	Channel command at/by PLC	P8680	8-75
	Manual/Step-by-step operation	P8740	8-81
	Handwheel/Sections/Home	P8770	8-85
	Startdata	P8800	8-88
	Program-controllingparameters	P8840	8-94
	Real time information theorem analysis	P8900	8-106
	Preanalysis information block/NC block	P9300	8-109

8. Parameters

8.6	Systemparameter		8-114
	Keyswitch	P11000	8-114
	Definition of the M-functions	P11050	8-118
	Internal oscilloscope	P11100	8-121
	Graphicparameter	P11120	8-122
	Systemparameter	P11130	8-123
	I/Ocirculation	P11170	8-128
	Eventloggingfordiagnosticpurposes	P11260	8-133
	Systemdiagnosis	P11280	8-137
	System data for Interpolator	P11300	8-138
	Override	P11310	8-140
	Handwheels/Couplings/Spindle	P11400	8-142
	Robotsystem	P11800	8-147
0.7			0 454
8.7	Axisparameter		8-154
	Machinedata	P12000	8-155
	Drive data for SERCOS	P12070	8-170
	AreamonitoringAxes	P12100	8-174
	Axis command/Functions	P12110	8-177
	Parameter block by PLC	P12130	8-182
	Axisacknowledgements/information	P12150	8-189
	Parameter block to the PLC	P12180	8-193

8.1 General

The **System 900** puts 10000 to 50000 parameters at the users disposal, depending on the system size. It is distinguished between two kinds of parameters:

System-Parameter q

Channel-Parameter P

System - Parameter q

This is a linear array, which is generally accessible, from q0.. q (max. parameter).

The area of q is subdivided in function blocks:

0 99	General system-configuration
100 999	Definition channel-descriptor
10001999	System-setups, system overlapping data
20009999	Axisdata
10000	Channel - Parameter

Notes:

Input0or— means0orreset

Counting method byte 1...4

Countingmethod bit 0...7

Example Counting method byte

Parameter Nr. Status indication byte Meaning

P1000 \$30020401	
byte 1 parameter loaded byte 2 parameter is transferred to the operating panel byte 3 parameter closed, if barrier 2 is settinged byte 4 hexadecimal format/parameter in the EEPROM store	

Channel - Parameter P

When programming a channel - parameter, a system parameter is always accessed in dependence on the channel - descriptor.

That means channel - parameters are actually system - parameters, whereby the channel - descriptor defines, which channel - parameter accesses on which system - parameter.

The assignment between channel - parameter and system - parameter is not linear. This assignment is defined in the channel - descriptor.

Channel-Parameter are virtual parameters, which show on a system - parameter. Therefore, the channel-parameter-number can be bigger than the maximum number of the parameters.

The area of P is subdivided into function - blocks:

0 6999	Userblock 1
	Free user parameters, actual number definably in q103
	standard adjustment: 5000 parameters.
	The user block 1 actual always on channel-specific area,
	i.e.: P0P6999 von Kanal 1 and
	P0P6999 von Kanal 2 are different parameters.

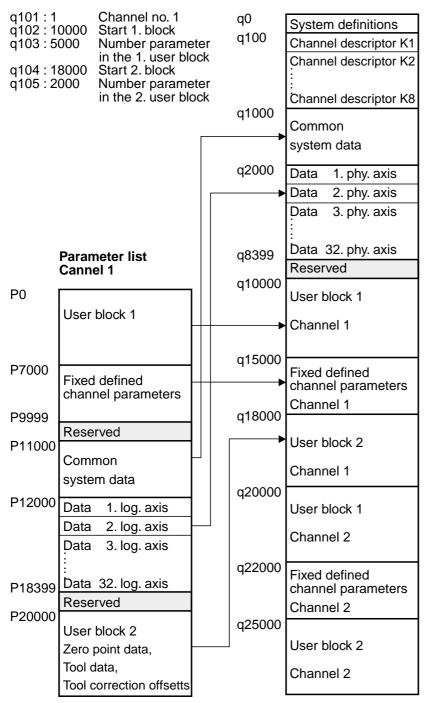
Userblock1 subdivided in:

0 499 0 300 400	299 399 499	,
500 69	99	Free area for the user
7000 99	999	Fixed defined channel - parameter
110001	1999	System - setup, system overlapping data, common area of all channels
1200018	8399	Axisdata
200002	9999	Userblock 2, e.g. Zeropoint datas
3000039 d	9999	Userblock 3, e.g Tool datas

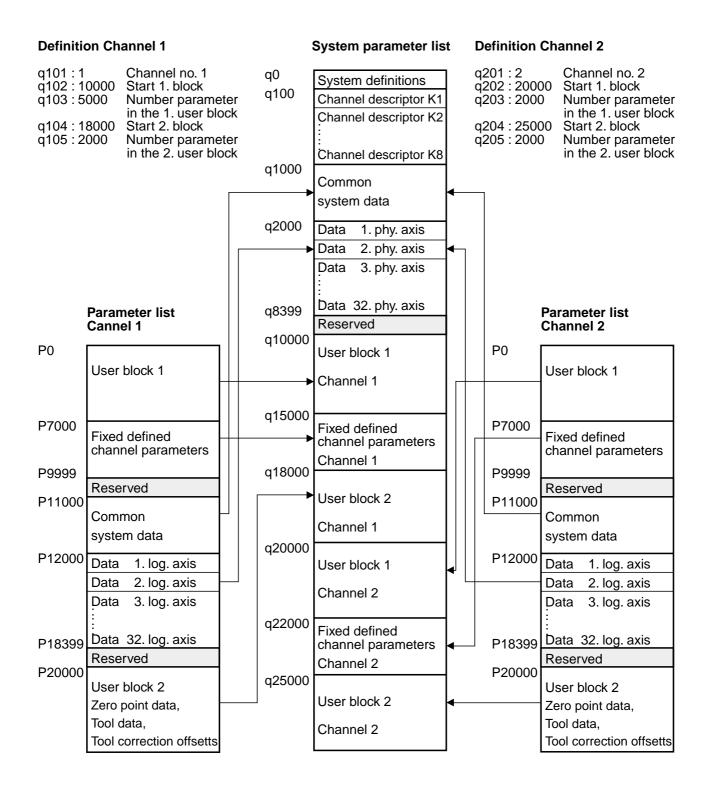
8.1 General (continued)

Each physical axis occupies a parameter block of 200 parameters.

In the system has physical axis	thearea	in the channel has logical axis	thearea
1.	q2000q2199,	1.	P12000P12199,
2.	q2200q2399,	2.	P12200P12399,
3.	q2400q2599,	3.	P12400P12599,
4.	q2600q2799,	4.	P12600P12799,
5.	q2800q2999,	5.	P12800P12999,
6.	q3000q3199,	6.	P13000P13199,
7.	q3200q3399,	7.	P13200P13399,
8.	q3400q3599,	8.	P13400P13599,
9.	q3600q3799,	9.	P13600P13799,
10.	q3800q3999,	10.	P13800P13999,
11.	q4000q4199,	11.	P14000P14199,
12.	q4200q4399,	12.	P14200P14399,
13.	q4400q4599,	13.	P14400P14599,
14.	q4600q4799,	14.	P14600P14799,
15.	q4800q4999,	15.	P14800P14999,
16.	q5000q5199,	16.	P15000P15199,
17.	q5200q5399,	17.	P15200P15399,
18.	q5400q5599,	18.	P15400P15599,
19.	q5600q5799,	19.	P15600P15799,
20.	q5800q5999,	20.	P15800P15999,
21.	q6000q6199,	21.	P16000P16199,
22.	q6200q6399,	22.	P16200P16399,
23.	q6400q6599,	23.	P16400P16599,
24.	q6600q6799,	24.	P16600P16799,
25.	q6800q6999,	25.	P16800P16999,
26.	q7000q7199,	26.	P17000P17199,
27.	q7200q7399,	27.	P17200P17399,
28.	q7400q7599,	28.	P17400P17599,
29.	q7600q7799,	29.	P17600P17799,
30.	q7800q7999,	30.	P17800P17999,
31.	q8000q8199,	31.	P18000P18199,
32.	q8200q8399	32.	P18200P18399


In the channel descriptor physical axes are assigned to the channel axes (q110...q141, Byte 3).

Configuration example for system with one channel (q2:1)


Definition Channel 1

System parameter list

Configuration example for system with two channels (q2:2)

8.1 General (continued)

display and input allocation of the Byte's and Bit's input in the Hexa format in the controller with key \pm clocks to \$ in Representation in Representation in display appears. Decimal/Hexaformat Binary format (half byte format) Now the digits know A, B, C, D, E, F 0 \$0 over the following keys 0000 0000 1 \$1 0001 0001 to be input: 2 \$2 0010 0010 3 \$3 key'modifying' 0011 0011 А 4 \$4 0100 0100 key'pos1' В 5 С key 'picture up' \$5 0101 0101 6 key'resetting' \$6 0110 0110 D 7 key'end' \$7 0111 0111 Е 8 \$8 1000 1000 F key 'picture down ' 9 \$9 1001 1001 10 \$A 1010 1010 11 \$В 1011 1011 With the operate of the input 12 \$C 1100 1100 key I those become originalfunctions 13 \$D 1101 1101 modifying, pos 1 etc. again 14 \$E 1110 1110 \$F adjusted. 15 1111 1111

General to the Decimal / Hexadecimal and Binary format

Bytes		Byte 4		Byte 3	Ι	Byte 2		Byte 1	
Bit number in the Byte	76	6543210		76543210	76	6543210	.	76543210	
Bitnumber in4Byte	313	302928272	62524	23222120191	81716	151413121	1109	8 765432	210

 $To meaning see {\it display} and {\it input} with parameter {\it status}, M {\it functions} {\it etc.}$

Parameter status

Each parameter possesses 4 status bytes, in which additional information is contained. The parameter status is displayed in the menu parameter editor.

Example:

Parameter NR. Status indication Meaning						
P1000 \$30	020401	 byte 1 parameter loaded byte 2 parameter is transferred to the operating panel byte 3 parameter closed, if barrier 2 is settinged byte 4 hexadecimal format/parameter in the EEPROM store 				
Status byte 1	bit00	Parameter is reset. Parameter is loaded.				
	bit 1	-				
	bit2 1	Parameter is loaded to the real time. This identifier works only in the AUTOMATIK operation when processing a NC program. Real time parameters do not become with an interpreting of the NC block (advance) described, but only if this NC block is actually processed. Real time parameters become from the Interpoator before the pre path M functional module described.				
	bit3 1	Parameter with synchronisation. This identifier works only in the AUTOMATIK operation when processing a NC program. Becomes from a NC program if parameters with this identifier described, becomes at the NC end of record synchronizes. (the advance of the theorem interpreter disassembled).				
	bit 4 0 1	Inch bit. Parameter is not influenced by input system. After switching the system of units of inch - > metric or metric - > inch becomes this parameter in each case into that different one system of units converted (see also P11308).				
	bit5-6	-				
	bit71	FAST parameter. Parameter is transferred over fast SMMS channel. (system internal information).				

Parameter status

Status byte 2	bit 0	1	Parameter is transferred when describing to the Interpolator.
	bit 1	1	Parameter is transferred when describing to the PLC. All parameters with settinged PLC bit become of the CNC transfer automatically after each switching on routine to the PLC.
	bit2	1	Parameter is transferred when describing to the operating panel. With each run of the switching on routine this bit becomes with all parameters reset.
	bit 3	1	Identifier procedure parameter. (SMMS chain is passed through when describing).
	bit4	1	Parameter becomes when describing to further CNC stations transfer (NET_GROUP) With (q59=0) this bit becomes with each run of the switching on routine with all parameters reset. With (q59=1) the bit is not changed.
	bit 5		-
	bit6	1	Parameter is transferred when each describing to the operating panel. (speed Par function)
	bit7	0 1	Parameter sample identifier not settinged Parameter sample identifier settinged, i.e. if P11271=4 becomes, describing this parameter in the sample buffer logs.

Parameter status

Status byte 3	-isthe -can	e para the P	ated parameter barrier ameter status nevertheless to be described LC nevertheless the parameter value change P8511
	Bit0	1	Parameters closed, if parameter barrier 1 is settinged
	Bit 1	1	Parameters closed, if parameter barrier 2 is settinged
	Bit2	1	Parameters closed, if parameter barrier 3 is settinged
	Bit3	1	Parameters closed, if parameter barrier 4 is settinged
	Bit 4 -	7	-

	Status byte 4	Bit0-3	Format for display: Number of post-decimal	positions
--	---------------	--------	--	-----------

- Bit 4 0 Decimal notation 1 Hexnotation
- Bit 5 0 Do not save parameter to EEPROM
 - 1 Save parameter to EEPROM (see also status Byte4/Bit6)
- Bit 6 Additional info for status Byte4/Bit5 (Save parameter to EEPROM)
 - 0 Parameter is stored in EEPROM completely (that is: the mantissa parameters and status parameters are the EEPROM is written and stored back.)
 - 1 ONLY parameter status is stored in EEPROM, The mantissa parameter is NOT stored. Case of a restore, the mantissa is not changed! The bit "Loaded parameter" is not changed!

Bit 7--

8.2 System Initializing

If a parameter in the area of q0 \dots q9 is changed, the control must be reset with 'Clear parameter'.

- Numberofaxes q1 Is written at the end of the starting routine by the system. The number of axes is calculated according to the definitions in the channel descriptors (q110..). q1 is transmitted to the PLC. Number of valid channel - descriptors. q2 Corresponds to the number of channels started when initializing. q3 Number of q-parameters, minimum 30000. q3 is described at the end of the switching on routine by the system! q4 Number of in the system involved slave CPUs (see the File:NETCONF) Pointer on system data enlargement q5 CPUDRAMMemorySize [MByte] q7 **q**8 **CPU clock** One describes by the system Version of the operating system of the operating panel q9 Parameter is written from the operating panel after the starting routine. Enable new operating panel commands 0
 - 1 new actual position display

8.2 System - Initializing (continued)

q10 FLASHFunctions/specialfunctions

So long a FLASH function actively is, should not the system not switched off become! For processing a q10-Funktion itself the machine must in operating mode HAND to find.

- 0 Backmessage: Function terminates
- 1 Reset the debugger
- 7 Direktory chain of the NC Speichers is again created (see also P11150 byte 2)
- 10 BWO system function
- 11 BWO system function
- 30 Delete the NC program was defined by q11 in the NC memory. q10:0: re-registration: executed function q11: error code: 0 OK 12xx error
- 50 FileScan in NC memory conformity of all program names in NC saving is tested. programs with ''or /\:*?"><|are reset.
 - 51 FileScan in FLASH memory conformity of all files in CNC FLASH Saving is tested. files with ''or /\:*?"><|are reset.

8.2 System - Initializing (continued)

q10 FLASHFunctions/specialfunctions

99 Activate channel descriptors (function 99 is effective only with EA import) Application: With this function defined channel descriptors (q100.., q200.., q300..) become

in accordance with q2 (number of valid channel descriptors) activates. Channels are however not started! This function is helpful while the loading of the machine data, even if here channel parameters must be described by channels, which not yet actively are.

Example: q 2: x ; q 100: ... q 200: ... q 300: ... ; q 1000: ... q 1000: ... ; q 10: 99 Activate channel descriptors ; K1:P8250: ... ; K2:P8250: ... ;

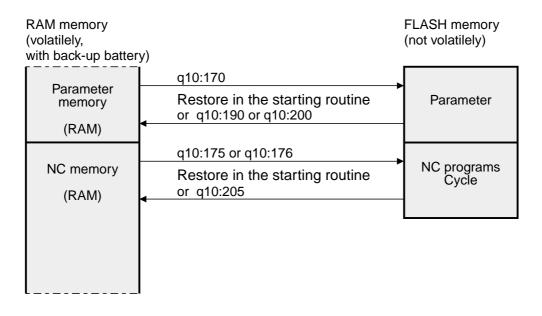
8.2 System - Initializing (continued)

q10 Functions:

- 120 Reset all parameters in the FLASH
- 125 Resetall NC programs in the FLASH
- 170 Store all marked parameters in the FLASH memory (max. 14000 parameters).

Being supposed the parameter areas of several channels to be stored, the following is to be observed: Channel descriptors that channels which can be stored must available/defined to be, i.e., q2 (number of channels) was changed, to start then the CNC is before memory again. Only with the passing through of the switching on routine become in the CNC, in accordance with q2, channels started.

In the machine data file with q10:99 if the channel descriptors was activated, so the parameters can to be stored immediately.


- 175 Store all visible NC programs/cycles from that NC memory in the FLASH (see also P11149) (max.262kBytes).
 In the starting routine after the 'NC memory 'all will reset in the FLASH stored programs into the NC memory written back.
- 176 Store all cycles of the NC memory in the FLASH In the starting routine after the 'NC memory 'all will reset in the FLASH stored programs into the NC memory written back.
- 177 Store all cycles and *. CLASS files of the NC memory into Flash File : NCZYK After switching on the NC memory is deleted, then all stored in FLASH programs are written in the NC memory.
- 185 Function as CMD 175, however, the data is stored (NCZYK) coded.
- 186 Function as CMD 176, however, the data is stored (NCZYK) coded.
- 187 Function as CMD 177, however, the data is stored (NCZYK) coded.
- 190 Restore q0..q999 from the FLASH memory.
- 200 Restore all parameters (apart from q0..q999) from the FLASH memory.
- 205 Restore all NC programs/cycles from the FLASH. (File NCZYK is read)

- 8.2 System Initializing (continued)
 - 500 With the I/O picture in the CNC direktory of the NC memory one displays.
 - 501 With the I/O picture in the CNC Direktory FLASH Contents are displayed.
 - 510 The CNC DLL Left is removed Caution: With the next start of the system, those is to CNC DLL not more for the order. Function is executed only if in g11:510 one enters before.
 - 520 The switch 'NO_DMA' is removed Function is executed only if in q11:520 one enters before.
 - 521 The switch 'NO_DMA 'is settinged Function is executed only if in q11:521 one enters before.
 - 530 The switch 'PLC_BIG 'is removed Function is executed only if in q11:530 one enters before.
 - 531 The switch 'PLC_BIG 'is settinged Function is executed only if in q11:531 one enters before.
 - 540 The switch/Document ECC is removed. Old parameters certification mark is formed for all parameters. Function is only executed if the 540 was entered in q11. The machine must be in the Emergency. Outputs may fall under certain circumstances. see also q86/M181
 - 541 The switch/Document ECC is removed.
 ECC parameters certification mark is formed for all parameters.
 Function is only executed if the 540 was entered in q11.
 The machine must be in the Emergency.
 Outputs may fall under certain circumstances.
 see also q86/M1812

8.2 System - Initializing (continued)

8.2 System - Initializing (continued)

- q12 Operating system version
- q13 Operating system check sum
- q14 Operating system time stamp day
- q15 Operating system time stamp month
- q16 Operating system time stamp year
- q17 Operating system time stamp hour
- q18 Operating system time stamp minute
- q19 Operating system time stamp second
- q22 DLL version
- q23 DLLchecksum
- q24 DLL time stamp day
- q25 DLL time stamp month
- q26 DLL time stamp year
- q27 DLL time stamp hour
- q28 DLL time stamp minute
- q29 DLL time stamp second

q32	PLC version	(planned)
q33	PLC check sum	(planned)
q34	PLC time stamp day	(planned)
q35	PLC time stamp month	(planned)
q36	PLC time stamp year	(planned)
q37	PLC time stamp hour	(planned)
q38	PLC time stamp minute (p	olanned)
q39	PLC time stamp second (p	olanned)
10		(

q40 BFSystemkennung (panelID)

8.2 System - Initializing (continued)

q41 Panel-System-bit information

CNC: from version 150/210 and panel version 150 q41 is set by the system after the power-on routine. Byte 1: Bit0 0:nc_line_mode not active 1:nc line mode active

(Switch'nc_line_mode' in NETCONF set)

nc_line_mode not enabled NC blocks must necessarily corresponding 'N' or '/N' begin. NC Editor is NC block-oriented.

When switching from nc_line_mode by NOT must nc_line_mode the NC memory can not be erased. NC programs with sentences without number can not be properly read/processed!

nc_line_mode activated (From the CNC version 150 and the panel version 150 is implemented) The nc_line_mode is activated with the entry: 'nc_line_mode' in the file: NETCONF der CNC

NC blocks do not have to necessarily start with 'N' or '/N' now. Valid entry point marks still have to but start with 'N' or '/N'...

 $When switching from NOT nc_line_mode after nc_line_mode, the NC memory must not be deleted.$

IO-INPUT:

- When reading of NC programs blank lines are not filtered.

- Sentences starting with ';' are still be filtered!

NC Editor is line oriented. (Display the line number) NC block numbers now act as a jump marks for NC block jumps. Entry point marks must be in ascending order!

e.g.: .

G01 F1000 X100 M23.100 —> Jump by Brand N100

N100X150 G04.1 X100

8.2 System - Initializing (continued)

Function: NC Renumber is blocked at nc_line_mode enabled. During the teaching of NC blocks no block number is inserted.

In AUTOMATIC Picture NC blocks are displayed with line numbers.

The following parameters now contain line numbers:

- P8695 Line number at RWL
- P8696 Line number at the measuring position recording
- P8803 Line number in the NC program abort
- P8901 current line number NC program real-time
- P8905 current line number cycle real-time
- P8907 Line number in the NC program abort
- P8911 Line number of the faulty block
- P8914 current line number in subroutine call
- P9301 current line number NC program pre-analysis
- P9305 current line number pre-analysis cycle
- P11146 Line number of the last edited NC program
- P11152 notused
- P11153 notused
- P11154 notused
- P11184 current line number at EA In-/Output

The following parameters contain According STILL sentence numbers:

- P8801 NC Start record number
- P8821 Emergency program 1 set number
- P8823 Emergency program 2 set number
- P8825 Emergency program 3 set number
- P8827 Emergency program 4 set number

Bit1:-

Bit2:-

Bit3:-

Byte2: Byte3:

Byte 4:

8.2 System - Initializing (continued)

q42	OPversion	(planned)
q43	OP check sum	(planned)
q44	OP time stamp day	(planned)
q45	OP time stamp month	(planned)
q46	OP time stamp year	(planned)
q47	OP time stamp hour	(planned)
q48	OP time stamp minute	(planned)
q49	OP time stamp second	(planned)

8.2 System - Initializing (continued)

ESR (starting routine) information

q50	Info	1 0	Parameters are deleted in ESR. Parameters are not deleted in ESR. Parameter shows information of the latest ESR.					
q51	Info	1	Parameters are deleted in ESR. Parameter is waiting and has to be deleted by the user.					
q52	Info	1 0	NC program memory is deleted in ESR. NC program memory is not deleted in ESR. Parameter shows information of the latest ESR.					
q53	Info	1	NC program memory is deleted in ESR. Parameter is waiting and has to be deleted by the user.					
q55	IP address of the CNC CCU (only ETH) Example: CNC CCU IP address = 172.16.30.78 Parameter value: \$\$AC101EÊ \$\$AC->172 \$10->16 \$1e->30 \$\$AC->78							
q59	 0 or — NET_GROUP bits in the parameter status become in each switching on routine reset. 1 NET_GROUP bits in the parameter status become in each switching on routine does not change. 							
q60	Password1(planned)							
q68	Pass	word	9(planned)					
q70 q71		ity PL0 ity cha	C (planned) innel1 (planned)					
q78	Prior	ity cha	nnel8 (planned)					
q80 q81	Parameter number (q) the defective parameter Parameter value 1 of the parameter defined in q80							
q84	Para	meter	value 4 of the parameter defined in q80					

8.2 System - Initializing (continued)

q85 Number of corrected parameters with ECC algorithm

q86 Parameter-marked type: 0 no ECC 1 ECC turned on

q87 Exception reason in Q87: (see also P8505) Byte 1:

Bit0 Inexact

- Bit1 Underflow
- Bit2 Overflow
- Bit3 Divide by Zero
- Bit4 InvalidOperation
- Bit5 UnimplementedOperation
- Bit6 :
- Bit7 :

Byte 2:

Bit1:NotAlligned-memory access

- q88 System address in Q88 (see also P8506)
- q89 Task-Id in q89 (see also P8507)

(00000.000.	
\$100	PLC-Task
\$101	PLC-CMD-Task
\$102	PLC-Background-Task
\$103	PLC-Server-Task
\$200	Proma-Task
\$201	Proma-CMD
\$300	Network-Task
\$301	Network-Master
\$400	CMD-STR-Task
\$500	SMMS-Task
\$600	Oskar-Task
\$700	position control
\$80x	AUTOMATIK-Task
\$900	realtime-Task
\$a00	Monitor-Task
\$b00	Proma-Transport-Task
\$c00	CPU2-TX-Task
\$c01	CPU2-RX-Task
\$d00	Follower-Task

8.2 System - Initializing (continued)

Internal system parameter to the PLC

- q97 Fatal error 0 or — No error <>0 Error number a cause for fatal error (M1800) q97 is set by the PLC
- q98 Error message information for the display q98 and q99 are set again at each channel changeover

Byte1 Channel1

- Bit 0: System message Bit 1: High priority message Bit 2: Low priority message Bit 3: Display message Bit 4: PLC high priority message Bit 5: PLC low priority message Bit 6: free Bit 7: free
- Byte 2 Channel 2
- Byte 3 Channel 3
- Byte 4 Channel 4
- q99 Error message informations Byte 1 Channel 5

8.3 Channel - descriptor

The channel - descriptors are in the area of q100...899, that means:

Channel1q100...q199Channel2q200...q299Channel3q300...q399Channel4q400...q499Channel5q500...q599Channel6q600...q699Channel7q700...q799Channel8q800...q899

If a parameter in the area of q100... q899 is changed, the control must be restarted.

q100	Channel parameter Relokator
	0 or — The fixed channel parameter area (P7000 P9999) adds itself seamless to the 1. User block (P0 Pxxxx) on.
	>0 The fixed channel parameter area (P7000 P9999) starts off the defined q parameter.
q101	Channel-No.1 channel1 fix defined
q102	Parameter - relocator Here is defined, from which q on the channel starts, e.g. q102: 10000, i.e. P0 shows on q10000
q103	Amount of channel - parameters in the 1st user block P0 P6999 Here is defined, how many parameters actually should be reserved. Input: 17000
	The fixed defined channel-parameters succeed to the 1st user block (3000 parameters).
q104	Parameter - relocator for 2nd user block P20000 Here is defined, from which q on this block starts, e.g. q104: 15000, i.e. P20000 shows on q15000 The area for the fixed defined channel-parametes is between the 1st. and 2nd user
	block (3000 parameter).
q105	Amount of the channel - parameters in the 2nd. user block P20000P29999Here is defined, how many parameters actually should be reserved.Input:0 or —no user block installs110000number of available parameters
q106	Parameter - relocator for 3rd user block P30000 Here is defined, from which q on this block starts, e.g. q106: 10000 i.e. P30000 shows on q10000
q107	Amount of channel - parameters in the 3rd. user block P20000 P39999Here is defined how many parameters actually should be reserved.Input:0 or —no user block installs1 10000number of available parameters

Parameters for channel - descriptor 1

q110 Axis name and axis assignment

Here is defined, with which name the axis is programed and which physical axis is addressed.

The Control determines with the system initialising the number of the axes available in the channel using this data.

1st. log. axis assignment -> to physical axis! byte 1Axis name (ASCII)

ASCII	А	В	С	D	Ε	F	G	Η	Ι	J	Κ	L	М	Ν	0	Ρ	Q	R	S	Т	U	۷	W	Х	Y	Ζ
Hex	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53	54	55	56	57	58	59	5A
ASCII	а	b	С	d	е	f	g	h	i	j	k	Ι	m	n	0	р	q	r	S	t	u	٧	W	Х	у	Z
Hex	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F	70	71	72	73	74	75	76	77	78	79	7A

Not certified axis identifiers are deposited with raster.

byte 2Axis identifier extended 1...8 e.g.: X1, X2 etc.

> note: If byte 1 and byte 2 = 0, there is no actual position display at the operating panel. If byte 2 = 0, consists the axis identifier only of one character (byte 1).

byte 3Physical axis number 1... 32 Defines, which physical axis is to be addressed. To observe: Input in the hexadecimal system e.g.: axis number 32—>input: \$20

byte4Keyallocation

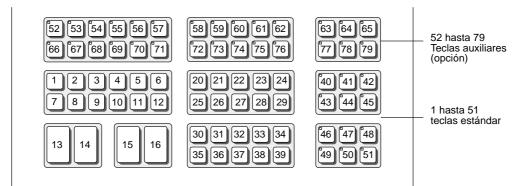
Defines, with which key in the operating panel axis block this axis one selects.

- 0 Axis is not selectable
- 1...79 Keynumber
- To observe: Input in the hexadecimal system

e.g.: keynumber66—>input: \$42

with RC910: extended axis selection keys 1..12. Axis code 1.. 12 13..32. Axis code 113..132 graphic—> keyboard RC910 extended axis keys

8.3 Channel - descriptor (continued)


Parameters for channel descriptor 1

q110 Axis identifier and axis allocation (continuation)

Examples:

q 1 1 0 : \$ <u>0 1 0 1 0 0 5 8</u>	axis identifier axis identifier extension physical axis axis selectable over key	58 -> X 00 -> keine 01 -> 1 01 -> 1
q 1 1 0 : \$ <u>4 2 1 f 0 3 5 9</u>	axis identifier axis identifier extension physical axis axis selectable over key	59 -> Y 03 -> 3 (Y3) 1 f -> 31 42 -> 66

Key numbers in CNC 900 and CNC 900C

Keynumbersin

CNC 902/CNC 903 CNC 904/CNC 905 CNC 910/CNC 920 CNC 930/RC 910

<i>5000</i>	CNC
40 41 42 43 44 45 46 47	
20	
21	
24	
25	
23	
38	
	22
	16
30 35 37 31 32 33 34	

8.3 Channel - descriptor (continued)

q111	2nd.log.Axis
q112	3rd.log.Axis

- :
- q141 32nd.log. Axis
- q142 Spindelassignments
- : Assignment of the in the NC program programmed spindle data to q149 the corresponding spindle blocks. Example: q143:4 When programming S2 in the NC - program, the number of revolutions in the 4th. spindle blockis changed. Input: 1...8
- q142 Spindle block reference for S
- q143 Spindle block reference for S2
- q144 Spindle block reference for S3
- q145 Spindle block reference for S4
- q146 Spindle block reference for S5
- q147 Spindle block reference for S6
- q148 Spindle block reference for S7
- q149 Spindle block reference for S8
- q150 Polar co-ordinate system : Name for radius (e.g. 'x') Input the ASCII code
- q151 Polar co-ordinate system : Name for angles (e.g. 'c') Input the ASCII code

q152	Definition	of the coordinate system	for G17					
	byte11.log	gicalaxisnumber	abscissa (horizontal axis)					
		01 centre point identifi	erl					
	byte 22. log	gicalaxisnumber	ordinate(verticallyaxis)					
	02 centre point identifier J							
	byte 33. logical axis number							
		03 vertically axis on the	e interpolation plane.					
	default	\$030201						

- q153 Definition coordinate system for G18 byte 11. logical axis number abscissa (horizontal axis) 03 centre point identifier K byte 22. logical axis number ordinate (vertically axis) 01 centre point identifier I byte 33. logical axis number 02 vertically axis on the interpolation plane. default \$020103
- q154 Definition coordinate system for G19 byte 11. logical axis number abscissa (horizontal axis) 02 centre point identifier J byte 22. logical axis number ordinate (vertically axis) 03 centre point identifier K byte 33. logical axis number 01 vertically axis on the interpolation plane. default \$010302

q157	CNC error message Acknowledgement 0 or — The acknowledgement of pending CNC Error messages takes place with mode change after HAND (—> when describing P8683). Additional is possible it to acknowledge over P8508 CNC Error messages. 1 The acknowledgement of pending CNC Error messages takes place only with describing P8508. With the mode change after HAND NO CNC becomes error messages acknowledges.					
q158	M function definition block from system or channel(i.e. P11050P11099)0 or —M0M199 are defined in the system block(i.e. P11050P11099)M200M999 are defined in the channel block(i.e. P8300P8499)1M0M999 are defined in the channel block(i.e. P8250P8499)					
q159	Default of the number of post-decimal positions of the position parameters After ' parameter = resetting ' (switching on routine) the following parameters become (in accordance with contents of q159 adjusted in the FLASH Memory) to post-decimal positions: - axis displays P12150 12169 - null point record - tool data theorem (starting from P10) 0 or — 3 post-decimal positions (standard adjustment)					
q166	Definition of the robotic data set (12) contnent: 0, deleted, 1 Robot-data set 1 (P11800P11809) is used 2 Robot-data set 2 (P11810P11819) is used In q166 = 0 or deleted : Robot-data set 1 (P11800P11809) is used					
q167	Definition of Polar data set (12) Content: 0, deleted, 1 Polar Record 1 (P11820 P11824) is used 2 Polar Record 2 (P11820 P11824) is used In q167 = 0 or deleted: Polar Record 1 is used					

Parameters for channel - descriptor 1

- q170 At the beginning of the zero point datas of blocks 1. Parameter Defined, at which parameter the zero point data array starts
- q171Number zero point blockswork areasStandard adjustment 1(see P8555)
- q172 Number of additional groups per zero point blocks Defined, from many individual shifts itself the total shift together settings. Standard adjustment 0

q173 Number of items (axes) per group Number of entries per zero point. The zero point array always becomes for 7 points of zero created. Number of used parameters:

Number zero point blocks	(q171 of work areas)
* (number of groups +1)	(q172+1)
* number of items per group	(q173axes)
*7	(number of points of zero with $q174=0, -)$

Number of used parameters for zero point array

q174 Number of usable, programmable points of zero 0 or — (preset) 7 available points of zero G53.. G59 (G153 always programmable)

- 1 G154.. G159 additionally programmable altogether 13 points of zero available G53.. G59, G154.. G159
- 2 G254..G259 additionally programmable altogether 19 points of zero available G53..G59, G154..G159, G254..G25
- 9 G954.. G959 additionally programmable altogether 61 points of zero available G53.. G59, G154.. G159.... G954.. G959

The zero point array is increased at additional points of zero: Number of used parameters:

Number zero point-corrodes	(q171 of work areas)
* (number of groups + 1)	(q172+1)
* number of items per group	(q173 axes)
* number of points of zero	(q174*6+7)

Number of used parameters for null point array

8.3 Channel - descriptor (continued)

Zero point records q170... q174

Example: Zeropoint box with 2 work areas

q170	20000	at the beginning of the zero point record
q171	2	number of zero point blocks (work areas)
q172	2	number of additional groups per zero point block (shift)
q173	3	number of items (axes) per group
q174	-	number of usable, programmable zero points: G53 G59=7

Workarea sum shift shift 1 shift2 Work area 1 P20021 P20042 G53 1. Achse P20000 2. Achse P20001 P20022 P20043 P20023 P20044 3. Achse P20002 P20003 G54 1. Achse P20024 P20045 2. Achse P20004 P20025 P20046 3. Achse P20005 P20026 P20047 P20027 G55 1. Achse P20006 P20048 2. Achse P20007 P20028 P20049 3. Achse P20008 P20029 P20050 G56 1. Achse P20009 P20030 P20051 2. Achse P20010 P20031 P20052 3. Achse P20011 P20032 P20053 G57 1. Achse P20012 P20033 P20054 2. Achse P20013 P20034 P20055 3. Achse P20014 P20035 P20056 G58 1. Achse P20015 P20036 P20057 2. Achse P20016 P20037 P20058 P20038 3. Achse P20017 P20059 G59 1. Achse P20018 P20039 P20060 2. Achse P20019 P20040 P20061 3. Achse P20062 P20020 P20041 Work area 2 P20063 P20084 P20105 G53 1. Achse 2. Achse P20064 P20085 P20106 3. Achse P20065 P20086 P20107 G54 1. Achse P20066 P20087 P20108 2. Achse P20067 P20088 P20109 3. Achse P20068 P20089 P20110 G55 1. Achse P20069 P20090 P20111 2. Achse P20070 P20091 P20112 P20071 P20092 P20113 3. Achse G56 P20072 P20093 1. Achse P20114 2. Achse P20073 P20094 P20115 P20074 P20095 3. Achse P20116 G57 1. Achse P20075 P20096 P20117 P20076 P20097 P20118 2. Achse P20098 P20119 3. Achse P20077 G58 1. Achse P20078 P20099 P20120 2. Achse P20079 P20100 P20121 3. Achse P20080 P20101 P20122 P20081 P20082 P20123 P20124 G59 1. Achse P20102 2. Achse P20103 3. Achse P20083 P20104 P20125

Channel - descriptor (continued) 8.3

Zero point records q170... q174

Example: Zeropoint box with extended zeropoints

q170	20000	at the beginning of the zero point record
q171	1	number of zero point blocks (work areas)
q172	3	number of additional groups per zero point block (shift)
q173	4	number of items (axes) per group
q174	1	number of usable, programmable zero points: G53G59 and G154G159=13

Work area 1			sum shift	shift 1	shift2	shift3
	G53	1. Achse 2. Achse 3. Achse 4. Achse	P20000 P20001 P20002 P20003	P20052 P20053 P20054 P20055	P20104 P20105 P20106 P20107	P20156 P20157 P20158 P20159
	G54	1. Achse 2. Achse 3. Achse 4. Achse	P20004 P20005 P20006 P20007	P20056 P20057 P20058 P20059	P20108 P20109 P20110 P20111	P20160 P20161 P20162 P20163
	G55	1. Achse 2. Achse 3. Achse 4. Achse	P20008 P20009 P20010 P20011	P20060 P20061 P20062 P20063	P20112 P20113 P20114 P20115	P20164 P20165 P20166 P20167
	G56	1. Achse 2. Achse 3. Achse 4. Achse	P20012 P20013 P20014 P20015	P20064 P20065 P20066 P20067	P20116 P20117 P20118 P20119	P20168 P20169 P20170 P20171
	G57	1. Achse 2. Achse 3. Achse 4. Achse	P20016 P20017 P20018 P20019	P20068 P20069 P20070 P20071	P20120 P20121 P20122 P20123	P20172 P20173 P20174 P20175
	G58	1. Achse 2. Achse 3. Achse 4. Achse	P20020 P20021 P20022 P20023	P20072 P20073 P20074 P20075	P20124 P20125 P20126 P20127	P20176 P20177 P20178 P20179
	G59	1. Achse 2. Achse 3. Achse 4. Achse	P20024 P20025 P20026 P20027	P20076 P20077 P20078 P20079	P20128 P20129 P20130 P20131	P20180 P20181 P20182 P20183
	G154	1. Achse 2. Achse 3. Achse 4. Achse	P20028 P20029 P20030 P20031	P20080 P20081 P20082 P20083	P20132 P20133 P20134 P20135	P20184 P20185 P20186 P20187
	G155	1. Achse 2. Achse 3. Achse 4. Achse	P20032 P20033 P20034 P20035	P20084 P20085 P20086 P20087	P20136 P20137 P20138 P20139	P20188 P20189 P20190 P20191
	G156	1. Achse 2. Achse 3. Achse 4. Achse	P20036 P20037 P20038 P20039	P20088 P20089 P20090 P20091	P20140 P20141 P20142 P20143	P20192 P20193 P20194 P20195
	G157	1. Achse 2. Achse 3. Achse 4. Achse	P20040 P20041 P20042 P20043	P20092 P20093 P20094 P20095	P20144 P20145 P20146 P20147	P20196 P20197 P20198 P20199 P20199
	G158	1. Achse 2. Achse 3. Achse 4. Achse	P20044 P20045 P20046 P20047	P20096 P20097 P20098 P20099	P20148 P20149 P20150 P20151	P20200 P20201 P20202 P20203
	G159	1. Achse 2. Achse 3. Achse 4. Achse	P20048 P20049 P20050 P20051	P20100 P20101 P20102 P20103	P20152 P20153 P20154 P20155	P20204 P20205 P20206 P20207

8.3 Channel - descriptor (continued)

- q175 Beginning of the tool data blocks 1. parameter Defines, from which parameter on the tool data array starts.
- q176 Number of tool data blocks Number of elements of the tool data arrays.
- q177 Number of Sub datas of blocks

 --, 0, 1it exists to only 1 main data of blocks
 > 1 number of Sub datas of blocks
 Lengthens a Sub data of blocks: (q178-8)/q177

 q178 Number of parameters of a tool kit
- Total length of an item in the tool data array. (inclusive all Sub data)
- q179 Number of tool places available in the tool magazine

8.3 Channel - descriptor (continued)

Example of tool data pool

 Without Sub datas of blocks

 q175
 21000

 q176
 99

 q177
 0

q178 20

Tool datas T1

- P21000 tool group number T1
- P21001 tool number (current numbering, starting with 1)
- P21002 tool workstation in the magazine
- P21003 tool Sub data of blocks (selected)
- P21004 type of tool
- P21006 service life command
- P21007 service life actual
- P21008 service life status 0 or — service life of OK ONE 1 service life run
- P21009 type of service life
- P21010 radius of the tool
- P21011 length of the tool
- P21012 radius correction
- P21013 length correction
- P21014 type of tool (active quadrant 0..9)
- P21015 customer data etc..

P21019

8.3 Channel - descriptor (continued)

Example of tool data pool

Tool datas T2

- P21020 tool group number T2
- P21021 toolnumber
- P21022 tool workstation in the magazine
- P21023 tool Sub data of blocks
- P21024 type of tool
- P21026 service life command
- P21027 service life actual
- P21028 service life status 0 or — service life of OK ONE 1 service life run
- P21029 type of service life
- P21030 radius of the tool
- P21030 radius of the tool
- P21031 length of the tool
- P21032 radius correction
- P21033 length correction
- P21034 type of tool (active quadrant 0..9)
- P21035 customer data etc..
- P21039

Tool datas T3

P21040 Group of tools of number T3

8.3 Channel - descriptor (continued)

Example of tool data pool

with 3 Sub	datas o	fblocks
------------	---------	---------

q175	21000	at the beginning of the tool datas
q176	20	number of tool data blocks
q177	3	number of Sub data blocks
q178	38	size of a data of blocks

Service life commandist is situated in the simultaneous data area! Being this required its, thus that each Sub data block receives its own service life, do not have the service life data in customers specific area to be held.

Tool datas T1

* - Simultaneous data area

P21000 P21001 P21002 P21003 P21004	* tool group number T1 * tool number * tool workstation in the m * tool Sub data of blocks (* type of tool	0
P21006 P21007	* service life command to * service life actual tool-s	
P21008	service life status 0 or — service life o 1 service life r	
P21009 P21010 P21011 P21012 P21013	type of service life radius of the tool length of the tool radius correction length correction	
P21014	type of tool	(active quadrant 09)

P21015 customer data etc..

8.3 Channel - descriptor (continued)

Example of tool data pool

SUB data of blocks 2 / T1

P21018	servicelifestatus	
	0 or —	servicelifeofOKONE
	1	serviceliferun
P21019	reserves	
P21020	radiusofth	etool
P21021	lengthofth	etool
P21022	radius corr	ection
501000		0

- P21023 length correction
- P21024 type of tool (active quadrant 0..9)
- P21025 customerdata etc..

SUB data of blocks 3 / T1

P21028	service life s 0 or — 1	tatus service life of OK ONE service life run
D 04000		
P21029	reserves	
P21030	radiusofthe	tool
P21031	lengthofthe	tool
P21032	radius corre	ction
P21033	length corre	ction
D01001	turne ofteol (active quedrant () ()

- P21034 type of tool (active quadrant 0..9)
- P21035 customerdata etc..

8.3 Channel - descriptor (continued)

Example of tool data pool

Tool datas T2

P21038	tool group number T2
--------	----------------------

- P21039 tool number (e.g.: current numbering)
- P21040 tool workstation in the magazine
- P21041 tool Sub data of blocks (selected)
- P21042 reserves
- P21043 reserves
- P21044 reserves
- P21045 reserves

SUB data of blocks 1 / T2

- P21046 service life status 0 or — service life of OKONE 1 service life run
- P21047 reserves
- P21048 radius of the tool
- P21049 length of the tool
- P21050 radius correction
- P21051 length correction
- P21052 type of tool (active quadrant 0..9)
- P21053 customerdata etc..

SUB data of blocks 2 / T2

P21056	servicelifestatus	
	0 or —	servicelifeofOKONE
	1	service life run)
P21057	reserves	
P21058	radiusofthe	etool
P21059	lengthofthe	etool
P21060	radius corre	ection
P21061	length corre	ection
P21062	typeoftool	(active quadrant 09)
P21063	customerd	ataetc

8.3 Channel - descriptor (continued)

Example of tool data pool

SUB data of blocks 3 / T2

P21066	servicelifestatus	
	0 or —	servicelifeofOKONE
	1	serviceliferun
D 04007		
P21067	reserves	
P21068	radiusoftheto	ol
P21069	lengthoftheto	ol
P21070	radius correcti	on
P21071	length correcti	on
P21072	typeoftool	(activequadrant0,,9)
P21073	customerdata	etc

Tool datas T3

P21076 tool group number T3

8.3 Channel - descriptor (continued)

Configuration - Example

Example:	Amount of channer Amount of axes	els :1 :3 (X,Y,Z1)	
q2	1	channels	
q101	1	channelnumber	
q102	10000	parameter - relocator user block 1	(qnumber)
q103	5000	number of channel parameters in the 1st. block	
q104	18000	parameter - relocator user block 2	(qnumber)
q105	2000	number of channel parameters in the 2. block	
q110	\$01010058	1st. logical axis = 1. physical axis, axis name 'X', key 1	8
q111	\$12020059	2nd. logical axis = 2. physical axis, axis name 'Y', key 1	
q112	\$0303005A	3rd. logical axis = 3. physical axis, axis name 'Z', key 3	
q170	20000	beginning of the zero point data block	
q171	1	number of zero point blocks	
q172	0	number of groups per zero point block	
q173	32	number of elements per group	
q175	21000	beginning of the tool data block	
q176	50	number of tool data blocks	
q177	1	number of sub data blocks	
q178	20	number of elements per data block	

Parameters for this example are lying for this example as follows:

	q0 q99 q100 q999	general system configuration definition channel descriptors
P11000P11999	q1000q1999	system overlapping data
P12000P13599	q2000q3599	axis data
P0P4999 q100	00q14999	customer parameter block 1
P7000P9999 q150	00q17999	fix defined channel parameters
P20000P21999	q18000q1999	9 for zero pointes, tool data

8.4 Modes of operation - groups

Operating mode network 1

The following parameters contain bit information for suitable channel selection.

Operating mode switching in the network q903 Bit information: bit 0 channel 1 bit 1 channel 2 e.g.: \$0000003: Channel1& channel2 (P8683 in the defined channels is simultaneous settinged) With the describing of q903 operating mode switching in the network becomes changes immediately. q904 Stop in the network (see q903) Stop in the network works only for STOP key i.e. if a channel over STOP key is stopped, become the remaining channels in network also stopped. Stop in the network does not work with stop by messages, measuring stops, Program end etc. With the describing of q904 stop in the network is changed immediately. q905 Abort in the network (see q903) With the describing of q905 abort in the network is changed immediately. q908 Message display in the network (messages of the CNC) Byte 1 Messages system and channel-specific messages of the PLC Byte 2 Messages High Prio. Byte 3 Messages Low Prio. Messages display and channel-specific messages of the PLC Byte 4 All bytes contain the following Bitinformation bit0 channel 1 bit 1 channel 2 : bit7 channel8 \$00030303 Example q908 Messages that priority system/High Prio./Low Prio. i.e.. in both channels (K1+K2) are displayed. The display messages are displayed only in the selected channel (byte 4 = 0).

8.4 Modes of operation - groups (continued)

Operating mode network 1

q909 PLC message display in the network (messages of the PLC) Byte 1 PLC Messages High Prio. Byte 2 PLC Messages Low Prio.

see further q908

q910 : q919	Operating mode network 2
q920 : q929	Operating mode network 3

- q930 Operating mode network 4
- q939

Standard channel parameters 8.5

P11	Pocket dimension in x-direction
P12	Pocket dimension in y-direction
P13	Pocket depth in z-direction
P14	Corner radius
P15	Allowance on outline in x and y-direction
P16	Setting measure in x or y-direction (sign $+/-$)
P17	Setting measure in z-direction
P18	Allowance on pocket depth in z-direction
P19	Safety margin in z-direction
P21	Feed in z-direction (when immersing into the material)

Standard channel parameters (continued) 8.5

Drill cycles (only if the drill cycles G81/G83/G84/G85 are used, otherwise freely available)

P30	Freecuttingtime	
P31	4 thread cutti	G84 ng without balance fodder on the right ng without balance fodder links cle (with balance fodder)
P32 P32	Drill feed Thread pitch	G84
P33 P33	Drilling depth Hread depth	G84
P34	Anticipationplane	Safety margin of the processing upper edge
P35	Retreatplane	To running around obstacles in the setting axis
P36 P36	Stroke rate Setting depth	G83, constant setting depth = (P33 - P34)/P36 G83, degressive setting depth
P37	1. Stroke	G83, degressive setting depth
P38	Safetymargin	G83, default = 1mm
P39	Gradual decrease 1 on 0 or off	G83, degressive setting depth

8.5 Standard channel parameters (continued)

Cycle patterns

(only if the cycle patterns G86/G87/G88/G89 are used, otherwise freely available)

G86 vector type processing

P100	Coordinate of the 1. Axis (x)
P101	Coordinate of the 2. Axis (y)
P103	Vector bracket related to the 1. Achse (x)
P104	Vectorlength
P105	Vectorsplitting
P106	Number of points of positioning

G87 scope handling of a parallelogram

Vector 1	Vector 2	
P100	P110	Coordinate of the 1. Axis (x)
P101	P111	Coordinate of the 2. Axis (y)
P103	P113	Vector bracket related to the 1. Achse (x)
P104	P114	Vectorlength
P105	P115	Vectorsplitting
P106	P116	Number of points of positioning

G88 grid handling

Vector1 P100 P101 P103 P104 P105	Vector2 P110 P111 P113 P114 P115	Coordinate of the 1. Axis (x) Coordinate of the 2. Axis (y) Vector bracket related to the 1. Achse (x) Vector length Vector splitting
P105	P115	Vectorsplitting
P106	P116	Number of points of positioning

G89 circle handling

P120	Coordinate of the 1. Axis (x) of the pitch diameter centre point
P121	Coordinate of the 2. Axis (y) of the pitch diameter centre point
P122	Circle diameter
P123	Startbracket
P124	Travelbracket
P125	Vectorpart
P126	Number of points of positioning

Standard channel parameters (continued) 8.5

Measuring cycle (only if the measuring cycle G69 are used, otherwise freely available)

P140	Cycleselection	
P141	Safetymargin	[mm]
P143	Measuringrate	[mm/min]
P144	Number of measurements at the same point (> 0)	[n]
P147 (P147)+4	Pointer on the measuring tolerance data Confidence interval	[mm]
P148	Measuring axis in plane system (13)	
P149 (P149)+0 (P149)+1 (P149)+2 (P149)+3 (P149)+4 (P149)+5	Pointer on the data of point of trigger XN, point of trigger in negative direction 1. Axis XP, point of trigger in positive direction 1. Axis YN, point of trigger in negative direction 2. Axis YP, point of trigger in positive direction 2. Axis ZN, point of trigger in negative direction 3. Axis ZP, point of trigger in positive direction 3. Axis	[mm] [mm] [mm] [mm] [mm]
P150 (P150)+0 (P150)+1 (P150)+2 (P150)+3	Pointer on the calibrationing drilling data Position of the calibrationing drilling centre point 1. Axis (i) Position of the calibrationing drilling centre point 2. Axis (j) Position of the calibrationing drilling centre point 3. Axis (k) Calibrationing drilling diameter	[mm] [mm] [mm] [mm]
P152	Expected drilling diameter	[mm]
P154 (P154)+0 (P154)+1 (P154)+2	Pointer on the measuring data Measuring position 1. Axis Measuring position 2. Axis Measuring position 3. Axis	[mm] [mm] [mm]

8.5 Standard channel parameters (continued)

Channel parameters

P70	Graphical programming environment with phase Input leg length	(G12)	[mm]
P71	Graphical programming environment with radius Input radius	(G12)	[mm]
P160	U_0 Origin axis 1 of the system UV (Rotating 45) Parameter is activated in the block with G45.		[mm]
P161	$V_{_0}$ Origin axis 1 of the system UV (Rotating 45) Parameter is activated in the block with G45.		[mm]
P163	E Rotating angle Content is activated in the block with G45. Conversion of the coordinates of the UV-system into coordinates of the XY-system $Xb = (U^{*}cosE - V^{*}sinE) + U0$ $Yb = (U^{*}sinE + V^{*}cosE) + V0$ see also G45/G56		[degree]
P165	Uadditive shift axis 1 (rotation G45 planned)		[mm]
P166	Vadditive shift axis 2 (rotation G45 planned)		[mm]
P168	E incrementing of the rotating angle (planned)		[degree]

System internally parameter

P7000 Parameter area is used by the system

P7999

	Offset
-Measuringposition	0 31
- Display positions	32 63
- Program positions	64 95
- Delta positions	96127
- Display shifts	128159

Zoom

P7900		m shot function 900 with each system start is reset)		
	0 1	OFF zoom shot ON	affects machine coordinates, indicator position is not influenced	
	2	zoomshotON	affects programmed coordinates	
P7901 P7902 :		m shot factor axis 1 m shot factor axis 2		

P7932 zoom shot factor axis 32

ZSM control parameter

- P7950 ZSM command
 - 0 in the case of current measurement, the measurement is aborted.
 - 1 startZSMmeasurement
 - ->P7960 to 1 is settinged
 - ->if P7960=10 measurement terminates error free.

Internal operational sequence with the measuring start: With the ZSM command ' start ZSM measurement ' becomes with the suitable Measuring axis (P7951) the ZSM Messaufzeichnung activates. In accordance with the defined measuring logic of this measuring axis (P12045, byte 4), becomes with the switch edge defined there the ZSM recording started. The first edge defines a gap/tooth change.

Example: P12045: \$0 xx xx xx switch edge positively effectively i.e.. The measured value recording starts with a positive switch edge at the sensor input (0/24V-Sprung). A positive edge is detected as gap/tooth change —> beginning of the tooth. A negative edge is detected as tooth/gap change —> beginning of the gap.

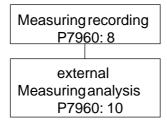
- P7951 Axis number Contents log. Axis number (1...32)
- P7952 Number of teeth which can be measured (max. 250) With (P7952 <= 3) the BWOZSM Korrektural gorithmus is not used. In this case the measured value results over the arithmetic means. With (P7952 = 1) P7962 and P7963 are reset after the measuring analysis

8.5 Standard channel parameters (continued)

ZSM control parameter

P7953 ZSM mode

0 or —


1

2

Measuring analysis of the CNC System (default) CNC System leads measured value recording and measuring analysis off. With success P7960:10 is settinged

Measuring	recording
P79	60: 5
	analysis eCNC 60: 10

Measuring analysis only externally CNC System leads measured value recording off. With success P7960:8 is settinged external measuring analysis (CNC-DLL, NC program.) becomes with P7960=8 triggered and ZSM status describes P7960:10 with success.

Measuring analysis internally and externally

CNC System executes measured value recording and measured value analysis. With error free operational sequence P7960:8 is settinged. external measuring analysis (CNC-DLL, NC program.) becomes with P7960=8 triggered and ZSM status describes P7960:10 with success.

Measuring recording P7960: 5
Measuringanalysis
in the CNC
P7960: 8
external
Measuringanalysis
P7960: 10

ZSM Statusparameter

P7954 Correction window

[%]

0...100Here the ZSM Korrektural gorithmus can be influenced,100ZSM Korrektural gorithmus in effectivy.0ZSM Korrektural gorithmus fully effectivelyif 0 or --80

P7955 Pointer on ZSM measuring data array Contents: 0 or >0 Measuring data after the measured value recording additionally stored in parameters. In the Messdatem array there are no modulo jumps.
<0 Measuring data after the measured value recording additionally stored in parameters. In the Messdatem array there are modulo jumps with round axes.

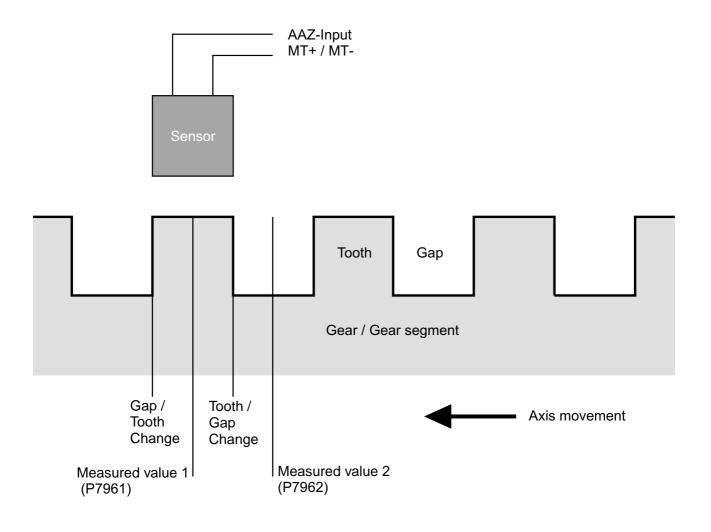
Example	
P7955	100
P100	Number of following measured values
P101	1. Measured value
P102	2. Measured value

ZSM Statusparameter

P7960	ZSM statusParameter may not be described.1measured value recording runs5measuring analysis runs10measurement terminates, measured value error free valid (I>10>10measurement incorrectly or aborted20measurement aborted2122division = 0 determines23fewer than 1 tooth per rotation2425measuring recording not correctly, missing measured value25measuring recording not correctly, measured values not corr26no measured values available30incorrect Input, P7951/P7952 check> 100 customized messages during external measuring analysis	es in the data array
P7961	Measured value 1 Tooth center Area 0 measured division Parameter is reset with start ZSM measurement	[°]
P7962	Measured value 2 Gap center Area: P7962 > P7961 Parameter with start ZSM measurement is reset With number of teeth = 1 (P7952 = 1) P7962 remains reset	[°]
P7963	Measured value 3 measured division Parameter with start ZSM measurement is reset With number of teeth = 1 (P7952 = 1) P7963 remains reset	[°]
P7964	Measured value 4 [number of teeth] Number of teeth on 360Grad Parameter with start ZSM measurement is reset	
P7965	Measured value 5 measuring away Distance: At the beginning of first tooth to end final tooth Worth actual signed! Parameter with start ZSM measurement is reset	[°]

8.5 Standard channel parameters (continued)

ZSM Statusparameter


Example of a measuring flow in the NC program

N100P7950:1 N110M1 N120P7960<10.110 N130P7960=10.200 N140... {start measurement} {loop re-entry point {control room, to measurement terminates or aborted} {branch, if measurement of OKONE} {error handling, measurement aborted or errors}

N200...:P7961

2

{measured value process}

8.5 Standard channel parameters (continued)

Channel parameters

P8000 Axis shifts :

P8031

P8000Shiftaxis1P8001Shiftaxis2P8002Shiftaxis3P8003Shiftaxis4

P8031 Shiftaxis 32

Tool - Data - Interface

P8040 T read in locking 0 or -- T read in locking is open Tread in locking is set 1 When a locking is set, it is prevented that the realtime data block (P8200...) is written by the system. If the read in locking is set and 'T' is programmed in the NC block, the NC program run is stoped as long as the T read in locking is set. Tread in locking is reset: -ataNC program start - when copying the real time data block into the spindle data block (P8046:2). P8041 Tool change BLOCKING in MANUAL mode content: 0,--: Allows tool change via P8043 Tool change via P8043 NOT possible 1 : P8042 Mapping Function for tool interface Byte 1: P8050.. P8099 from channel n Byte 2: P8100..P8149 from channel n Byte 3: P8150..P8199 from channel n Byte 4: P8200.. P8249 from channel n The mapping is active immediately in writing of the parameter. P8043 Tool change in manual mode (See release P8041) Tool data block into the PLC tool Data of blocks (P8050... P8099) and in real time data of blocks (P8200...) charge. see also 8044 Example: P8043:2 In the tool data array the tool group number 2 is looked up. Actual the search successfully, becomes the suitable data of blocks after P8050... and P8200...copies. With T0 one zeroes. If the data of blocks is not found, appears a message. Subsequently, into the autooperation is changed and Z6 is called. at the end of Z6 to the manual mode one shifts back. If Z6 does not become available actual, instead of the program call (Z6) M6 to the PLC transmitted.

With active tool change DLL command 1 is transmitted to the DLL, before Z6 on one calls.

Tool - Data - Interface

 P8044
 Tool Sub data of blocks number with tool change in the HAND operation (P8043)

 P8044 must be described before P8043!

 Contents: -, 0,
 1

 Main data block/1. Sub data block

 2
 2. Sub data block

 3
 3....

P8045 Tool datas take up

Byte 1	CMD
Byte 2	CMDExtention

CMD1

Thus the PLC tool Data of blocks (P8050..) becomes into the spindle tool data of blocks (P8100..) and the offsetting data of blocks (P8150..) copy. Contents of CMD Extention actual all the same.

CMD2

Thus the real time data of blocks (P8200..) becomes into the spindle tool data block (P8100..) copied.

Additionally t-read in-barrier is reset. (P8040:0)

With CMD Extention: Channel number of the real time of data of blocks.

0 or — Umkopieren within the current channel

1..8 Umkopieren channel-spreading Real time data of blocks 1..8. Channel (CMD Extention) becomes in spindle tool data block (P8100..) of the current channel copies. the current channel is in the operating mode HAND becomes additional the spindle tool data block (P8100..) into the offsetting data of blocks (P8150..) copied. The tool data set array is set to zero when the corresponding tool location tool.

CMD3

Thus the spindle tool data block (P8100..) of the active channel becomes into the spindle tool data block (P8100..) in CMD Extention defined Channel umkopiert.

CMD10

Thus the PLC tool Data of blocks (P8050..) becomes into the Spindelwerkzeugdata of blocks (P8100..) copies.

Tool - Data - Interface

- P8046 Tool datas copy over 1 Thereby the spindle tools record (P8100..) becomes in offsetting record (P8150) copies.
 - 2 Thereby the PLC becomes tool record (P8050...) into that offsetting record (P8150) copies.

P8047 Tool datas placings 1 Thereby the spindle tool data block (P8100..) becomes in the suitable tool data block array back-stored and afterwards the actual spindle tool data block reset. If P8100 = 0 or -- (no tools in the spindle) this procedure becomes leave immediately.

With active tool change DLL only command 2 is transmitted to the DLL.

P8048 Tool group number (t-paragraph from NC program) (parameter to the real time is described) The parameter is described only if 'T' is programmed in the NC block

P8049 Info NC block contains tool-controlling m-function

- 0 no tool-controlling m-function
- 6 M06 in the block
- 16 M16 in the block

P8049 is described in the advance, if T is programmed in the NC block P8049 is updated, before the parameter block P8050... is described.

Tool-Data-Interface

P8050..P8099

current PLC tool data (Interface to PLC) Here are the tool data that has been transferred to the PLC. This tool data are loaded in the flow, with the tool data according to the programmed in the NC program T. (see also P8049)

special case:

If the tool group number (T number) is equal to the tool group number of the spindle data, the PLC tool data is not loaded from the tool data array, but the spindle-record in the PLC-Tool record copied.

Tool - Data - Interface

Organization of the tool datas

The type of tool system (Offset=4) in the tool data block determines, how tool length work:

Type of tool system (Offset=4) -, 0.. 99 (milling machine) 500,,599 (centre lathe)

System type Milling machine Total of tool length (P8161) and werkzeuglaengen-Korrektur (P8163) work in the axis, which is vertically on the current processing level.

Example Standard axis allocation 1. 2. 3. G17 X Y Z length works in Z-axis G18 Z X Y length works in Y axis G19 Y Z X length works in x axis *—*processing level

Tool data block organization Offset

- 0 tool group number (t-NR)
- 1 toolnumber
- 2 tool workstation in the magazine
- 3 tool Sub data of blocks
- 4 type of tool system (0, .99 = milling machine)
- 5 reserves
- 6 service life command
- 7 service life actual
- 8 service life status (0 or service life of OK, 1 service life run)
- 9 type of service life
- 10 radius of the tool
- 11 length of the tool
- 12 radius correction
- 13 length correction
- 14 type of tool (active quadrant 0,,9)
- 15 customer data etc.. < the customized area starts here
- 49

Tool - Data - Interface

Type of system centre lathe Total of tool length 1 (P8161) and tool length 1 correction (P8163) ===> works in the 2. even axis, Total of tool length 2 (P8165) and tool length 2 correction (P8166) ===> works in the 1. even axis,

Example

Standard axis allocation

1.2.3.

G17 XYZ length 1 works in Y-axis, length 2 works in X-axis

- G18 ZXY length 1 works in X-axis, length 2 works in Z-axis
- G19 YZX length 1 works in Z-axis, length 2 works in Y-axis *—*processing level

Tool data block organization

Offset

- 0 tool group number (t NR)
- 1 toolnumber
- 2 tool workstation in the magazine
- 3 tool Sub data of blocks
- 4 type of tool system (500..599 = centre lathe)
- 5 reserves
- 6 service life command
- 7 service life actual
- 8 service life status (0 or service life of OK ONE, 1 service life run)
- 9 service life type
- 10 radius of the tool
- 11 length 1 of the tool
- 12 radius correction
- 13 length 1 correction
- 14 type of tool (active quadrant 0,,9)
- 15 length2ofthetool
- 16 length 2 correction
- 17 customer data etc.. < the customized area starts here

8.5 Standard channel parameters (continued)

Tool-Data-Interface

P8050	tool group number (t-NR) P8050 is not transferred during the restarting simulation (P8686=1) to the PLC				
P8051	tool number, current numbering, starting with 1 When describing the PLC tool Data of blocks becomes of the system P8051 with serial-number of the data of blocks in the tool data array described. With the placing of the data of blocks (P8047) this serial-number becomes addressing in the tool data array uses.				
P8052	toolworkstationinthemagazine				
P8053	tool Sub data of blocks, 0, 1main data of blocks/1. Sub data block22. Sub data block				
P8054 P8055 P8056 P8057	type of tool system reserves service life command service life actual				
P8058	service life status 0 or — service life of OKONE 1 service life run				
P8059	servicelifetype				
P8060 P8061 P8062 P8063 P8064 P8065 : P8099	radius of the tool length of the tool radius correction length correction type of tool (active quadrant 09) user data < here the user specific area starts				

Tool - Data - Interface

Actual spindle tool data block

P8100 Actual spindle tool data block.
: The data block refers to the actual tool in the spindle.
P8149 This data block is loaded from the tool data array and when laying back the tool stored again into the array.

P8100 P8101	Tool group number Tool number	(T - number) (e.g. continuous numbering)
P8102	Tool place in the magazine	
P8103	Tool sub data block	(selected)
P8104	typeoftoolsystem	
P8105	reserves	
P8106	service life command	
P8107	servicelifeactual	
P8108	servicelifestatus	
	0 or — service life of OKONE	
	1 service life run	

- P8109 service life type
- P8110 Tool radius
- P8111 Toollength
- P8112 Radius correction offset
- P8113 Length correction offset
- P8114 Tool type (active quadrant 0...9)
- P8115 Customer data <---Here the customer specific area begins
- P8149

8.5 Standard channel parameters (continued)

Tool - Data - Interface

Actual data block

P8150	Actual data block.
:	This is the data block, which is calculated into the NC program.
P8199	From this data block, it can not be stored back to the data array.

P8150 P8151 P8152	Tool group number Tool number Tool place in the magazine	(T - number) (e.g. continuous numbering)
P8153	Tool sub data block	(selected)
P8154	type of tool system	
P8155	reserves	
P8156	service life command	
P8157	servicelifeactual	
P8158	service life status 0 or — service life of OK 1 service life run	ONE
D0450	a single a life to make	

- P8159 service life type
- P8160 Tool radius
- P8161 Toollength
- P8162 Radius correction offset
- P8163 Length correction offset
- P8164 Tool type (active quadrant 0...9)
- P8165 Customer data <---Here the customer specific area begins
- P8199

Tool - Data - Interface

Real time data block

This is the data block that is loaded from the system to the real time:

- -T programmed in the NC block
- -TM6 programmed in the NC block (is not written at TM16)

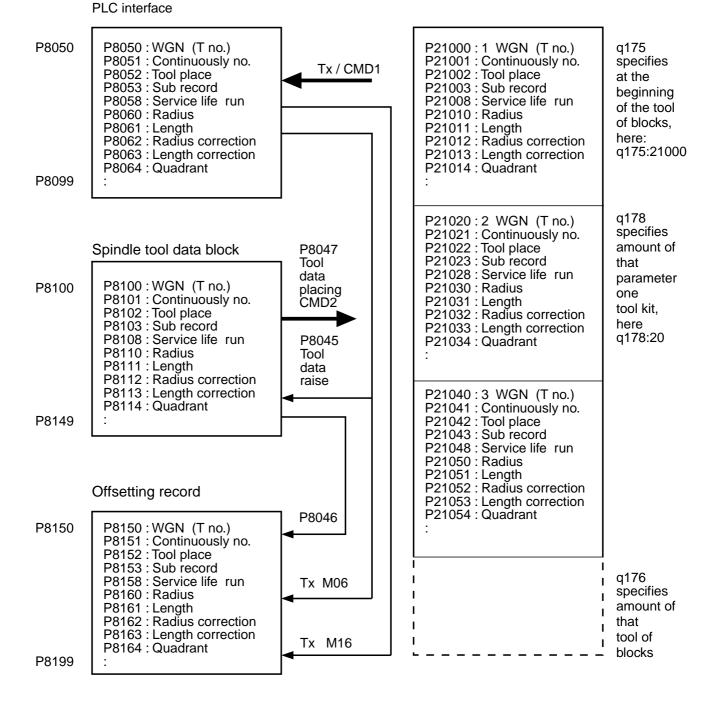
Special case:

If the tool group number (T number) is the same like the tool group number of a spindle data block, the PLC tool data are not loaded from the tool data array, but the spindle data block is copied into the PLC tool data block.

See also Tread in locking P8040

With external tool administration, the real time data block is loaded with calling up command 3.

P8200 P8201 P8202 P8203 P8204 P8205 P8206 P8207 P8208	Tool group number Tool number Tool place in the magazine Tool sub data block Type of tool system eserves Service life command Service life actual Tool life status 0 or tool life o.k., 1 tool life over	(Tnumber) (e.g. continuous numbering) (selected)
P8209	Servicelifetype	
P8210 P8211 P8212 P8213 P8214	Tool radius Length of the tool Radius correction Length correction Tool type	(acitve quadrant 09)
P8215	Customerspecificarea	
P8249		

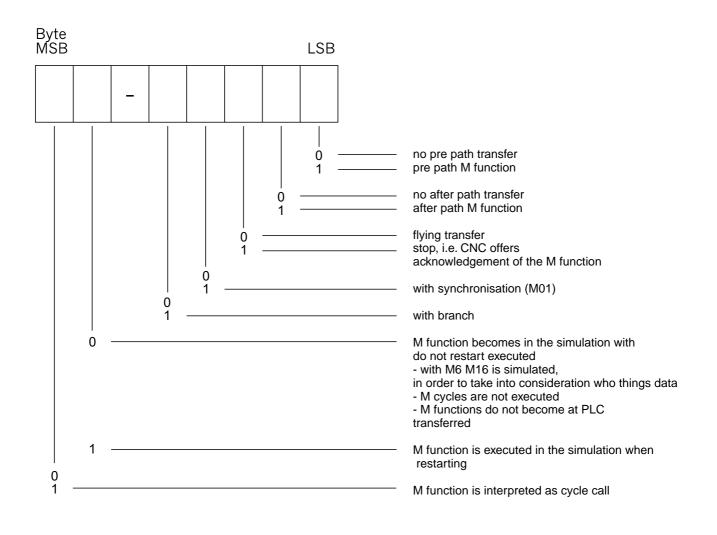

8.5 Standard channel parameters (continued)

Tool data blocks in the overview

Tool data interface

specifies firmly

Tool data array freely definably



8.5 Standard channel parameters (continued)

Channel specific definition of the M functions

Information for a M - function

P8250 Channel-specific definition of the M functions see table starting from P11050, see also q158 Here 1000 channel-specific M functions can be specified. Note: A modification in P8250.. becomes with a operating modes changes by HAND after AUTO effectively.

Definition of the M functions

P8250 M	03	02	01	00
P8251 M	07	06	05	04
P8252 M	11	10	09	08
P8253 M	15	14	13	12
P8254 M	19	18	17	16
P8255 M	23	22	21	20
P8256 M	27	26	25	24
P8257 M	31	30	29	28
P8258 M	35	34	33	32
P8259 M	39	38	37	36
P8260 M	43	42	41	40
P8261 M	47	46	45	44
P8262 M	51	50	49	48
P8263 M	55	54	53	52
P8264 M	59	58	57	56
P8265 M	63	62	61	60
P8266 M	67	66	65	64
P8267 M	71	70	69	68
P8268 M	75	74	73	72
P8269 M	79	78	77	76
P8270 M	83	82	81	80
P8271 M	87	86	85	84
P8272 M	91	90	89	88
P8273 M	95	94	93	92
P8274 M	99	98	97	96
P8275 M	103	102	101	100
P8276 M	107	106	105	104
P8277 M	111	110	109	108
P8278 M	115	114	113	112
P8279 M	119	118	117	116
P8280 M	123	122	121	120
P8281 M	127	126	125	124
P8282 M	131	130	129	128
P8283 M	135	134	133	132
P8284 M	139	138	137	136
P8285 M	143	142	141	140
P8286 M	147	146	145	144
P8287 M	151	150	149	148
P8288 M	155	154	153	152
P8289 M	159	158	157	156
P8290 M	163	162	161	160
P8291 M	167	166	165	164
P8292 M	171	170	169	168
P8293 M	175	174	173	172
P8294 M	179	178	177	176
P8295 M	183	182	181	180
P8296 M	187	186	185	184
P8297 M	191	190	189	188
P8298 M	195	194	193	192
P8299 M	199	198	197	196

P8300 P8301 P8302 P8303 P8304	M M M M	203 207 211 215 219	202 206 210 214 218	201 205 209 213 217	200 204 208 212 216
P8305 P8306 P8307 P8308 P8309	M M M M	223 227 231 235 239	222 226 230 234 238	221 225 229 233 237	220 224 228 232 236
P8310 P8311 P8312 P8313 P8314	M M M M	243 247 251 255 259	242 246 250 254 258	241 245 249 253 257	240 244 248 252 256
P8315 P8316 P8317 P8318 P8319	M M M M	263 267 271 275 279	262 266 270 274 278	261 265 269 273 277	260 264 268 272 276
P8320 P8321 P8322 P8323 P8324	M M M M	283 287 291 295 299	282 286 290 294 298	281 285 289 293 297	280 284 288 292 296
P8325 P8326 P8327 P8328 P8329	M M M M	303 307 311 315 319	302 306 310 314 318	301 305 309 313 317	300 304 308 312 316
P8330 P8331 P8332 P8333 P8334	M M M M	323 327 331 335 339	322 326 330 334 338	321 325 329 333 337	320 324 328 332 336
P8335 P8336 P8337 P8338 P8339	M M M M	343 347 351 355 359	342 346 350 354 358	341 345 349 353 357	340 344 348 352 356
P8340 P8341 P8342 P8343 P8344	M M M M	363 367 371 375 379	362 366 370 374 378	361 365 369 373 377	360 364 368 372 376
P8345 P8346 P8347 P8348 P8349	M M M M	383 387 391 395 399	382 386 390 394 398	381 385 389 393 397	380 384 388 392 396

Definition of the M functions

P8351 N P8352 N P8353 N	M M M M	403 407 411 415 419	402 406 410 414 418	401 405 409 413 417	400 404 408 412 416
P8356 M P8357 M P8358 M	M M M M	423 427 431 435 439	422 426 430 434 438	421 425 429 433 437	420 424 428 432 436
P8361 M P8362 M P8363 M	M M M M M	443 447 451 455 459	442 446 450 454 458	441 445 449 453 457	440 444 448 452 456
P8366 M P8367 M P8368 M	M M M M	463 467 471 475 479	462 466 470 474 478	461 465 469 473 477	460 464 468 472 476
P8371 N P8372 N P8373 N	M M M M M	483 487 491 495 499	482 486 490 494 498	481 485 489 493 497	480 484 488 492 496
P8376 N P8377 N P8378 N	M M M M M	503 507 511 515 519	502 506 510 514 518	501 505 509 513 517	500 504 508 512 516
P8381 M P8382 M P8383 M	M M M M	523 527 531 535 539	522 526 530 534 538	521 525 529 533 537	520 524 528 532 536
P8386 M P8387 M P8388 M	M M M M	543 547 551 555 559	542 546 550 554 558	541 545 549 553 557	540 544 548 552 556
P8391 N P8392 N P8393 N	M M M M	563 567 571 575 579	562 566 570 574 578	561 565 569 573 577	560 564 568 572 576
P8396 M P8397 M P8398 M	M M M M	583 587 591 595 599	582 586 590 594 598	581 585 589 593 597	580 584 588 592 596

P8400 P8401 P8402 P8403 P8404	M M M M	603 607 611 615 619	602 606 610 614 618	601 605 609 613 617	600 604 608 612 616
P8405 P8406 P8407 P8408 P8409	M M M M	623 627 631 635 639	622 626 630 634 638	621 625 629 633 637	620 624 628 632 636
P8410 P8411 P8412 P8413 P8414	M M M M	643 647 651 655 659	642 646 650 654 658	641 645 649 653 657	640 644 648 652 656
P8415 P8416 P8417 P8418 P8419	M M M M	663 667 671 675 679	662 666 670 674 678	661 665 669 673 677	660 664 668 672 676
P8420 P8421 P8422 P8423 P8424	M M M M	683 687 691 695 699	682 686 690 694 698	681 685 689 693 697	680 684 688 692 696
P8425 P8426 P8427 P8428 P8429	M M M M	703 707 711 715 719	702 706 710 714 718	701 705 709 713 717	700 704 708 712 716
P8430 P8431 P8432 P8433 P8433	M M M M	723 727 731 735 739	722 726 730 734 738	721 725 729 733 737	720 724 728 732 736
P8435 P8436 P8437 P8438 P8439	M M M M	743 747 751 755 759	742 746 750 754 758	741 745 749 753 757	747 744 748 752 756
P8440 P8441 P8442 P8443 P8444	M M M M	763 767 771 775 779	762 766 770 774 778	761 765 769 773 777	760 764 768 772 776
P8445 P8446 P8447 P8448 P8449	M M M M	783 787 791 795 799	782 786 790 794 798	781 785 789 793 797	780 784 788 792 796

Definition of the M functions

P8450 P8451 P8452 P8453	M M M M	803 807 811 815	802 806 810 814	801 805 809 813	800 804 808 812
P8454 P8455 P8456 P8457 P8458	M M M M	819 823 827 831 835	818 822 826 830 834	817 821 825 829 833	816 820 824 828 832
P8459 P8460 P8461 P8462 P8463 P8464	M M M M M	839 843 847 851 855 859	838 842 846 850 854 858	837 841 845 849 853 857	836 840 844 848 852 856
P8465 P8466 P8467 P8468 P8469	M M M M	863 867 871 875 879	862 866 870 874 878	861 865 869 873 877	860 864 868 872 876
P8470 P8471 P8472 P8473 P8474	M M M M	883 887 891 895 899	882 886 890 894 898	881 885 889 893 897	880 884 888 892 896
P8475 P8476 P8477 P8478 P8479	M M M M	903 907 911 915 919	902 906 910 914 918	901 905 909 913 917	900 904 908 912 916
P8480 P8481 P8482 P8483 P8484	M M M M	923 927 931 935 939	922 926 930 934 938	921 925 929 933 937	920 924 928 932 936
P8485 P8486 P8487 P8488 P8489	M M M M	943 947 951 955 959	942 946 950 954 958	941 945 949 953 957	940 944 948 952 956
P8490 P8491 P8492 P8493 P8494	M M M M	963 967 971 975 979	962 966 970 974 978	961 965 969 973 977	960 964 968 972 976
P8495 P8496 P8497 P8498 P8499	M M M M	983 987 991 995 999	982 986 990 994 998	981 985 989 993 997	980 984 988 992 996

8.5 Standard channel parameters (continued)

Messages

P8500 P8501 P8502 P8503	Message Message Message Message	system high-priority low-priority onlydisplay	causes abort of all channels causes abort of the channel causes stop of the channel
P8504 P8505 P8506 P8507	Additional information of axis Additional information 1 for message Additional information 2 for message Additional information 3		Info1 in the picture with key '?' Info2 in the picture with key '?' Info3 in the picture with key '?'
P8508	Acknowledgement of pending CNC messages (see also q157)		
P8509	Actually displayed message (parameter of the PLC one describes) Byte 1 Message paragraph Byte 2 Message paragraph Byte 3 Channel number (18) Byte 4 Axis paragraph (132) (Parameter is described by PLC) When message numbers between 30003999, the message is only entered in the sample buffer when P11263 was not described. (see also P11263)		

Channel locking

P8510 Automatic transmission locking

The lockings that are defined here are activated in the AUTOMATIC mode. Activating can be done with the mode of operation changeover (see also P11010...) Byte 0 Bit 0 Parameter locking 1 (see also parameter status byte 3)

- Bit 1 Parameter locking 2 (see also parameter status byte 3) Bit 2 Parameter locking 3 (see also parameter status byte 3)
 - 2 Parameter locking 3 (see also parameter status byte 3
- Bit 3 Parameter locking 4 (see also parameter status byte 3)

Byte 3

- Bit0 NC-memory locking
- Bit1 Cycle-memorylocking

P8511 Removal of the parameter barrier for NC program

For the parameter barriers defined here one becomes in the AUTO operation Parameter allocation off the NC program out certified.

- Byte 1Bit 0Parameter barrier 1(see also parameter status byte 3)Bit 1Parameter barrier 2(see also parameter status byte 3)Bit 2Parameter barrier 3(see also parameter status byte 3)
 - Bit 3 Parameter barrier 4 (see also parameter status byte 3)

Channel informations

P8540 P8549	Mfunction - interface diagnosisDiagnostic parameter only described with active PLC<>CNCinterface diagnosis. (P11280=1)Byte 1Mfunction paragraphByte 2Mfunction paragraphByte 3Mfunction definition
P8550	Channel number, is pre-allocated. Contents 1 with channel 1 Contents 2 with channel 2 : Contents 8 with channel 8
P8551	Number of axes of this channel, is obtained when the switching on routine.
P8552	Final axis in the channel (logical axis paragraph) After the switching on routine one obtains.
P8553	Mapping test parameter Mode of operation: P8553 is described with a p-paragraph, sees P8554.
P8554	Those obtains the Procedure called when describing the parameter P8553 q paragraph this parameter and this writes after P8554.
P8555	Actual work area, switches zero point blocks over0 or Invalid work area11. Record of the zero points actively22. Record of the zero points actively::
P8556	Mask for suppressed shifts when activating a zero point in the AUTOMATIK operation. Contents: Bit information Example: P8556 = 4 (0000 0100) ==> with the next zero point call becomes 3. Shift does not consider
P8559	Control rooms on end of block acknowledgement with M function with stop 0 or ok 1 Wait for acknowledgement (block release) (CNC waits for the PLC Acknowledgement of a m-function with stop)
P8561	Dripfeedbufferlevel

Channel informations

P8570... Actual reference point display

P8570	1stdisplayfield	Content:	132 logical axis number
:			0 no display

- P8577 8th display field
- P8578 Number of max. reference point displays in the status line, if P8578 < axis number of the last channel axis, the reference point displays are showing the subsequent reference points.

P8679 All reference points taken

0 or -- Not all reference points taken

1 All reference points in the channel taken

Channel informations

- P8580 Actual organization of the actual position display
 : This parameter area is set by the operating system.
 P8587 (may not be written).
- P8580 Number of the display field Content: 1..32 logical axis number 0 no axis display Byte 1 display field 1 Byte 2 display field 2 Byte 3 display field 3 Byte 4 display field 4
- P8581 Number of the display field Byte 1 display field 5 Byte 2 display field 6 Byte 3 display field 7 Byte 4 display field 8 :
- P8587 Number of the display field 29..32
- P8588 Maximum number of actual display fields

Channel informations

- P8590 Standard (customer specific) organization of the actual position display
 : At each operating mode change, the here defined actual position display is activated.
- P8597
- P8590 Number of the display field
 - Content: 1..32 logical axis number 0 no axis display
 - Byte 1display field 1Byte 2display field 2
 - Byte 3 display field 3
 - Byte 4 display field 4

Comment:

With the describing of P8590 the Istpositionsanzeige is again structured. (trigger parameters)

- P8591 Paragraph of the indication area
 - Byte 1display field 5Byte 2display field 6Byte 3display field 7Byte 4display field 8
- P8597 Paragraph of the indication area 29.. 32 Parameter with trigger function. With each describing P8597 becomes into that parameters P8590... activates p8597 specified Istpos display.
- P8598 Display mode of the actual position display 0 or -- If the actual position display knows not all available axes at the same time to raise, if this becomes on the final indication area with the axis selection of an axis, which not at the moment to display comes, another axis to displace.
 - 1 Actual position display does not change.

Channel informations

Example actual position display

X		13.0	00	Y		0.000	Z		1.000	A		1.000
В		2.0	00	С		2.000	U		3.000	۷		3.000
j	(ana l											
Displayf	ield 1		Dis	playf	ield2	Dis	playf	ield3	Dis	playi	field4	
Dis	splayfie	eld5		Dis	splayfiel	d6	Di	splayfie	ld7	Di	splayfie	ld 8

8.5 Standard channel parameters (continued)

Presettings MANUAL (planned)

P8600 Presetting axis position display

P8639

2

Presetting AUTO (planned)

P8640	1	NC block analysis transfer only, if cycle in the block programs actual (P9700 9789 described) no positioning of the master record off no version of I/J/K/R/T/F/G/M/S P97009789 initialized: - NUMERICAL CONTROL program start - return of the cycle to the main program
P8642	0 or —	P9790 P9799 is not described

> Example P8642:100 (pointer on P100)

P100: 72('H')—>P9790: Contents of H P101: 75('K')—>P9791: Contents of K P102: 79('O')—>P9792: Contents of O P103: 0(end of the list)

with P8642 <> 0: P9790..9799 initialized: - NC program start - return of the cycle to the main program

P8650 G-function-default AUTOMATIK operation Parameter value: G-function code Table is processed up to the ßt reset parameter or to P8659 Example: P8650: 28/G28 settings P8651: 54/G54 settings P8652: 18 P8653: -P8659:

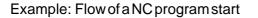
P8660

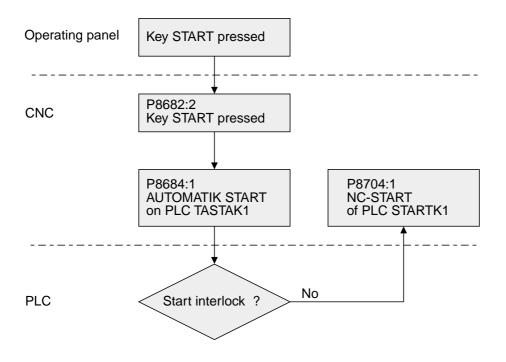
P8679

8.5 Standard channel parameters (continued)

Channel - Commands to PLC

P8681	KeyManual 0 Keyreleased 1 Keypressed	(to PLC)	is written by the o	peratingpanel (PLC:THANDK1)
	P8681 is written by the operat	ingpanel.		. , , , , , , , , , , , , , , , , , , ,
P8682	KeyStart/Stop 0 Keysreleased	(to P	LC) is written by	/the operating panel
	1 Key Stop pressed 2 Key start pressed			C:TSTOPK1) C:TSTARK1)
	2 Key start pressed When writing P8682, P8684 is and answered to the PLC.	s written with	```	/
P8683	Mode of operation change	(to P	LC)	
	1 Manual Pending CNC message mode change after han		vith	(PLC:BAWHAK1)
	2 Automatic sequential b 3 Automatic single block			(PLC:BAWAUK1) (PLC:BAWAUK1)
	8 Automatic positioningb	olock		(PLC:BAWAUK1)


Channel - Commands to PLC


- P8684 Automatic transmission Start/Stop (to PLC)
 - 0 Stop
 - 1 Start

Example: NC Program start

(PLC:TASTOK1) (PLC:TASTAK1)

When writing P8682, P8684 is written with AUTO-Start/Stop and answered to the PLC. If there are no start interlocking in the PLC, the Start/Stop command is answered to P8704. With P8704 the NC program (P8800) is started.

 P8685
 Automatic program active (to PLC) The CNC indicates here the actual condition. The parameters may not be written.
 (PLC:ANAK_K1)

 0
 Program not yet active or finished. 1
 (PLC:ANAK_K1)

 1
 Program active Stop 2
 (PLC:AASP_K1)

 2
 Program active Start
 (PLC:AAST_K1)

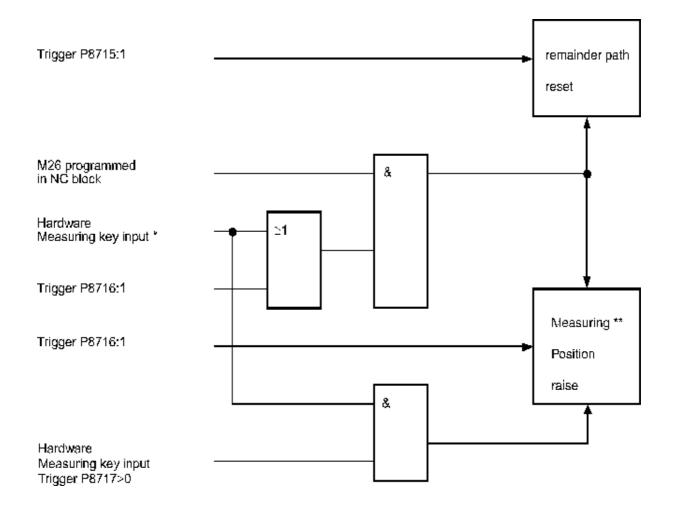
Channel - Commands to PLC

P8686	 Restarting info. at PLC No restarting, normal railway company. Restarting without axis movement, NC program is in the browsing. Restarting at outline (axis movement), starting block was found. Outline on direct path started with rapid traverse feed (P8816). With achieving the outline P8686:0 						
P8687	AUTO program runs Parameter may not be described! 0 with program end or program abort 1 parameter is described uniquely with program start with 1						
P8688	Acknowledgment of the current operating mode of the interpolator. $P8707$ —(Interpolator)—> $P8688$						
P8689	Actual type of coordinate (see also P8759) 0 or Transformation out 15, 16 Polar transformation 47, 48, 49 Robot transformation						
P8690	M function code at PLC Transmit a m-code at PLC in the manual operation.						
P8695	Acknowledgement for remainder path resetting P8695: 0, at P8715:0 P8695: -1, at the start of an NC block with M26 If an NC path over - Hardware probe input - P8715 aborted, P8695 is described by the current NC block number.						
P8696	Acknowledgement for measuring position accommodation P8696: 0, bei P8716:0 P8696: -1, at the start of a test drive P8717 When measuring position taken - Hardware probe input - P8716 P8696 is described by the current NC block number. (see also P8895)						

8.5 Standard channel parameters (continued)

Channel commands of the PLC

P8700	Enab 0 1	le regulator for channel no regulator enabling, i.e. command = actual of the axis enable regulator		(PLC:REOK_K1)
P8701	Enab 0 1	le move of all axes in the channel no channel enabling, i.e. stopping the axes without dynamics channel enabling	3	(PLC:KAFR_K1)
P8702	Secu 1	rity stop of all axes in the channel Stop, i.e. stopping the axes with dynamics		(PLC:SICHAK1)
P8703	Mode 1 2 4 8	e of operation MANUAL AUTO sequential block AUTO single block AUTO positioning block		(PLC:BA_K1) (PLC:HAND_K1) (PLC:AUTF_K1) (PLC:AUTE_K1) (PLC:AUTP_K1)
P8704		D Start/Stop with a NC program is started (number is in P8800). Stop Start	(PLC:	STARTK1)
P8705	NC pi 1	rogramabort Abort	(PLC	ABBRUK1)
P8706		le block ence by sentence control of a NC program No block change Block change		(PLC:SAFREK1)
P8709	Refei 0 1	rence points taken Reference points not yet taken All reference points taken		(PLC:REFALK1)


Channel command of PLC

P8710	Emergency programm call 1 0 No call 1 Program call Program - and block number according Function: When calling up an emergency program When activating a emergency program sequential block is changed. If operating mode change is locked, the At the end of the emergency program the remains. When starting the emergency	marunning NC progra n in manual mode, the emessage 1320 appe ne mode of operation /	operating mode AUTO ears. AUTO sequential block			
P8711	Emergency program call 2 0 No call 1 Program call Program- and block number according Function see P8710	to P8822, P8823	(PLC:NPA2K1)			
P8714	Conditional block skip 0 no skip 1 skip after block number	(M22)	(PLC:BSP22K1)			
P8715	Trigger for clearing movement in progr 0 set P8695:0 1 trigger (see P8695)	ess (M26)	(PLC:TRWLOK1)			
P8716	Trigger for software-measuring key (PLC:TSWMTK1) 0 set P8696:0 1 Trigger for recording measurement position of all axes in the channel see: P8696, P8895					
P8717	 Measuring position release Measuring position release over unique release for measuring position release over constant release for measuring position release over constant release for measuring p (see P8696) 	sition accommodation sensor input				

8.5 Standard channel parameters (continued)

Clearing residual traverse (movement in progress) Measuring position logics

note:

*seealso	P12045	measuringlogic
**seealso	P12153 P12181 P8855 P8655	measuring position measuring position achieves measuring position type of display acknowledgement measuring position accommodation

Teach-in

P8747		Axis selection at Teach-In				
	0 or Al		g axis positions are overtaken in the NC block at			
		key	target=actual			
	<>0	Onl	y axis positions according to selection are overtaken in the			
		NC	block			
	Example	e:				
	P8747:	0FH	At axis 1 to 4, the position is overtaken in the NC block.			

P8748 Radius with Teach in used tools.

Example: The NC program created in Teach in with tool radius R=10mm. This NC program can be processed now with a drill by R=8mm, if palpation tool P8748:10 is settinged.

The werkzeugradius-Korrektur actually which can be executed becomes by this Input influences. Example:

Example	•	
Tool	T1:	Radius R=10mm
Palpatior	ntool:	P8748:2,5 (mm)

N10T1M6 N20G42 . —> radius correction operates with R=7.5mm

- P8749 Mode of coordinate for Teach In Input 0 off
 - 48 tool coordinate mode
 - 49 work piece coordinate mode

8.5 Standard channel parameters (continued)

Manual operation

P8750	Traverse mode selection1Continuously2Step3Hand-wheel4Divide5Home	ion (relative) (relative) (absolute/relative) (absolute/relative)	(PLC:KONT_K1) (PLC:STEP_K1) (PLC:HARA_K1) (PLC:TEIL_K1) (PLC:HOME_K1)
P8751	Axis selection Logical axis number 1.	(PLC:RAGAWK1)	
P8752	the axis (P8751) starte	this parameter the technique become ed in the suitable procedure mode (P8 f the system with depressing the key h	750).
P8753	Relative-travel in man (internally used param		
P8754	max.programmablem	nanualfeed	[mm/min,degree/min]
P8755	Programmedmanual	[mm/min,degree/min]	
P8756	Actualmanualfeedrat	e	[mm/min, degree/min]

Manual operation

- P8757 Coordinate system in HAND Input --, 0, 17 G17 18, 19, 117, 118, 119 Gxxx The tool length always affects the vertically axis of the interpolation plane. Parameter wid after each passing through of the switching on routine reset.
- P8758 Zeropointes in Manual - display of the actual zeropoint in manual operation. - When writing the corresponding zeropoint is activated. Input 53...59, 153... (reset 15) Parameter wid after each passing through of the switching on routine reset.
- P8759 Coordinate mode in Manual 0 transformation off

Polartransformation

Input 15 off

16 on

Robottransformation

- Input 47 off
 - 48 Tool-coordinates
 - 49 Workpiece coordinates
 - 4849 Automatic switch between 48 and 49

Parameter wid after each passing through of the switching on routine reset.

[mm]

8.5 Standard channel parameters (continued)

Step operation

P8760	Actual step width	
P8761	step width 1 hon step w	idth
P8762	Pointeronselect	edstep
P8763 : P8769	Step width table	
P8763	Step width 1 default	10
P8764	Step width 2 default	1
P8765	Step width 3 default	0,1
P8766	Step width 4 default	0,01
P8767	Step width 5 default	0,001
P8768	Step width 6 default	0
P8769	Step width 7 default	0

Hand-wheel

P8770	Active hand-wheel 0 No hand-wheel switched on 18 Number of hand-wheel switched on					
P8771	Hand-wheel 1 Bitinfo for axes, which may proceed with hand-wheel. Bit 031, axis 131 Example: 8771: 03 The 1st and 2nd axis can only be selected with the hand-wheel.					
P8778	Hand-wheel8					
P8779	Hand-wheeldefir	nition				
	Byte 1 0	Hand-wheels are activated individually with the hand-wheel key. Hand-wheel multiplicator is modified individually. During hand-wheel far one circuit axis selection is not changed.				
	\$10	All hand-wheels are always simultaneous activated. Hand-wheel multiplicator is modified individually. During the hand-wheel far circuit the former axis selection becomes this hand-wheel again activates.				

Indexing (planned)

P8780

2

P8789

8.5 Standard channel parameters (continued)

Home (planned)

P8790

2

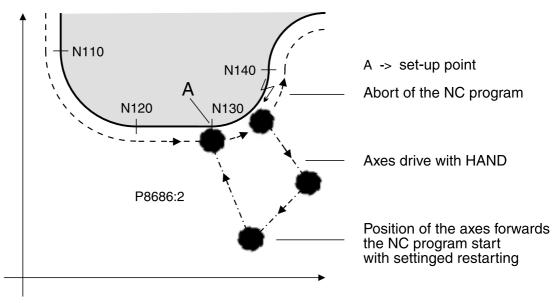
P8799

Standard channel parameters (continued) 8.5

Start data

P8800	Program number of the program to be started (see P8704)
P8801	Block number Start from this block.
P8802	Program number in the case of the NC program abort Parameter is described by the system see function: Restart at outline
P8803	Record number in the case of the NC program abort Parameter is described by the system see function: Restart at outline
P8804	Restarting at outline 0 or Restarting function not actively 1 Restarting function actively
	Mode of operation restarting at outline:
	In the case of the abort of a current NC program (HAND abort, message) becomes of system the actual NC program position in the parameters P8802, P8803 and P8807 stored. A properly terminated NC program resets these information.
	After an NC abort if the restarting mode is switched on and the NC program started, then if the NC program up to the restarting point is simulated, i.e no axis movements egeben themselves.
	In the restarting block the simulation is switched off. The restarting position on direct path one starts. With achieving the restarting position becomes P8804=0 settinged.
	One restarts on the initial position of the aborted block. If the NC program in a process cycle is aborted, then becomes to cycle start started.
	When restarting become accordingly m-functions, M6 and m-cycles M function definition (P11050, P8250) treats.
	When restarting become accordingly m-functions, M6 and m-cycles M-Funktionsdefinition (P11050, P8250) treats. During the restarting simulation P8050 (advance t NR.) becomes to the PLC do not transfer.
	see also P8686

ondirect



8.5 Standard channel parameters (continued)

Start data

P8805 Restarting adjustments

Example:

P8805 Selection NC interpreter

- 0,— NC program is executed with standard NC interpreter.
- 1 NC program is executed with enhanced NC interpreter. —> Processing of C high-level language elements.

P8806		Startda	•
	Byte 1	bit0 0	No block display during cycle handling 1 Block display runs during cycle handling
		bit 1 1	Micro block display with DLL cycles (display of the advance) in the 2. Message line. Display the block items, which to NC interpreters are geschleusst. (parameter allocations are carried out in the CNC DLL, if not real time echtzeit-oder synchronisation parameters) see also P8814
		Bit2 -	
		Bit3 -	
		Bit4 0 1	All NC blocks are stopped in AUTO SINGLE BLOCK mode Only records with real-time information to be stopped in AUTO SINGLE BLOCK.
			e.g.: Blocks with parameter calculations can not be stopped Blocks with traversing positions or M function etc. be stopped
		Bit 5 - Bit 6 - Bit 7 -	
	Byte 2	bit0 0	Increasing automatic file barrier actively, that is, of the NC interpreter processed NC programs and cycles remain up to the program end (abort or M30) with the editing barrier provide (max. 250 entries). Increasing automatic file barrier not actively, now the editing barrier is only so long active, as the NC
			interpreter the NC program opened
			(interpreter operates in the advance).
		Bit1 1	Message M1307 is suppressed (symbolic variables unknown)
		Bit2 0	Virtual Console releases of the NC program (Example: N200 message) are displayed in the respective channel. (Default)
		1	Virtual Console releases of the NC program (Example: N200 message) are shown in the current display channel.
		Bit3 -	
		Bit4 -	
		Bit5 -	
		Bit6 -	
		Bit7 -	

Byte3	bit 0	0 Drill cycles don	otpend to	modal,		
	1	G80 does not have effect. Drill cycle modality switched on, with the unique program of drilling cycle (G81, 83,84,85) is in the following NC blocks, implicitly WITH way, the first called programmed drilling cycle. This Modalitaet is switched off with G80.				
	Bit 1 Bit 2 :- Bit 3 :- Bit 4 :- Bit 5 :-	0 — 1 Drilling program that is, if G81/83 address values drilling feed: drilling depth advanced stop pla retraction plain Number of strokes plain drilling depth G17 Z G18 Y G19 X	ming via ad 3/84/85 pro are stored F X,Y,Z in R I,J,K	ddress lett ogrammed only on pa P32 P33 (de P34 P35 P36 nced olain	ters activated; d in the block follo arameters.	wing plane G17/18/19)
	Bit6:- Bit7:-					
Byte 4	bit0 1 Bit1:- Bit2:- Bit3:- Bit3:- Bit4:- Bit5:- Bit6:- Bit7:-					

8.5 Standard channel parameters (continued)

P8807	Start data flag		
	Byte1 bit0 0		
		1	With the call of a tool in the NC block (T) Z5 becomes processed.
			With the call of Z5 actual the PLC Interface (P8050) with new data
			described.
			Error message, if Z5 missing!
	bit 1		—
		1	With the call of a tool in the NC block (T) none become
			tool datas loaded. No access to the tool data array.
			With a call of Z5 P9322/P9323 are loaded.
	Bit2		-
	Bit3		-
	Bit4	0	(Default) Loading the Dripfeed buffer, change of operating modes and for auto mode
		1	Loading the Drip Feed buffer only at the start of the automatic program
	Byte2:		
	Bit 0	0	Start of the NC interpreter with NC START in automatic mode
		1	Start of the NC interpreter change of operating modes to AUTO.
			The NC interpreter begins immediately by the mode change to
			AUTOMATIC with the interpretation of the NC blocks and prepares
			the NC data for the interpolator.
			This is done until the first synchronization in the NC program,
			or until the buffer is filled to the interpolator.
			(see on forerun P9300/P9301)
			Will reference for a preliminary executed:
			- Parameter calculations / allocations (not real-time assignments!)
			- Program Controlling M functions M23, M28.
			if not defined with synchronization
			-Cycle calls
			With NC-Start will be:
			-traverse paths
			-Mfunctions to the PLC
			- Real-time parameter assignments
			executed.
	Atthe	een	d of the program the NC interpreter is started up again immediately.

8.5 Standard channel parameters (continued)

In the mode change to AUTO : P8685 : 1 (STOP program active) P8687 : 1 (Program runs)				
Se	etto!!			
	Bit 1 Bit 2 Bit 3	-		
	Bit 4 Bit 5 Bit 6 Bit 7	- -		
Byte 3	_			
Byte 4	—- Bit 0 Bit 1	1 1	ALL records for interpolator looped through (temporary!!) Enable cache NC	

8.5 Standard channel parameters (continued)

Start data

P8808	Driv	DrivingmodeAUTOMATIC		
	0	Notraversing the axes in AUTOMATIC		

- 1 Manual traversing of the axes in the AUTOMATIK operation approved
- P8809 Graphics on/off
 - 0 Graphics off
 - 1 Graphics on
- P8810 Block skip
 - 0 Block skip not switched on
 - 1 Block skip switched on

P8811 Dripfeed operation

- 0 No Dripfeed operation
- 1 With Dripfeed operation
- P8812 Without axis movement
 - 1 NC program sequence without axis movement
- P8813 Without M-function

1

- NC program sequence without M-function
 - M-functions at PLC are not transmitted
 - program-controlling M-functions work unchanged
 - -branch M-functions do not branch

8.5 Standard channel parameters (continued)

Start data

P8814	Single block mode with/without stop in intermediate blocks 0 or each main block is stopped in the single block mode 1 after each block end is stopped in the single block mode (at cycle blocks, insert block etc.	e
P8815	Testfeed rate 0 or switched off <>0 at G01, G02 and G03 this programmed feed is used.	[mm/min]
P8816	Rapid traverse G00 0 or Manual feed rate active max. Axis speed (P12004) the axes available in the channel positions. <>0 with prog. Rapid traverse is positioned with this speed.	[mm/min]
P8817	Asynchronous feed rate The programmed feed rate of the active NC block is replaced until the block end by the feed rate of P8817	[mm/min]
P8818	Percentage feed rate change The programmed feed rates in the NC program are changed with th percentage value.	[%] is

P8819 eroding feedrate

8.5 Standard channel parameters (continued)

P8820 P8821	Program number Block number Emergency program call up see P8710	Emergency program 1
P8822 P8823	Program number Block number Emergency program call up see P8711	Emergency program 2
P8824 P8825	Program number Block number Emergency program call up see P8712	(Emergency program 3 planned)
P8826 P8827	Program number Block number Emergency program call up see P8713	(Emergency program 4 planned)
P8828	1 M0-measuring M0 stops: PLCs forwards. The M M0 does not sto	ystem always on STOP is generated stop is controlled via PLC settings with M0 program STOP (P8704) 1-function-acknowledgement. p: PLC does not setting program STOP before acknowledgement
P8830	Zeropoint in AUTO 0 or NC program starts with G53 5359,153 NC program starts wit	h the programmed zero point
P8836	Correction-reviewed at G 151/152 Percentage contour distance content: 0.0 : prog. Points to go (G152 ine	effective)
·	1.0: Corrected points to go	

Program controlling parameters

- P8840 Definition of the coordinate system for G117 (see also q152...)
 - Byte 1 1. logical axis paragraph abscissa (horizontal axis) centre point identifier I
 - Byte 2 2. logical axis paragraph ordinate (vertically axis) abscissa and ordinate specify the level, in which the circular interpolation takes place. centre point identifier J
 - Byte 3 3. logical axis paragraph definition of the vertically axis on the interpolation level

The definition of the sense of circle turning a right-angled coordinate system always becomes assumed.

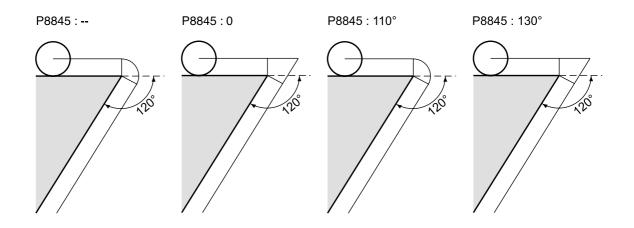
K)

The direction of rotation in the various levels is as follows determined: One looks against the direction of the axis, which is vertically on the level. (axis No. in byte 3). With G02 now in the clockwise direction one interpolates. With G03 against the clockwise direction one interpolates.

Programming example: N100G117P8840:\$00010302 byte: 4321

- P8841 Definition of the coordinate system for G118 (see also g153..) Default, if 0 or -- \$020103 Byte 1 03 (centre point identifier K) Byte 2 01 (centre point identifier I) Byte 3 02 P8842 Definition of the coordinate system for G119 (see also q154..) Default, if 0 or -- \$010302 Bvte1 02 (centre point identifier J)
 - Byte 203 (centre point identifierByte 301

Program controlling parameters


--

- P8843 Max. one permitted radius error during centre point programming [mm] 0 or -- Default radius error 0.003mm otherwise error message M1238
 - <>0 Permitted error of the radius during centre point programming, starting from that the error message M1238 is output.
- P8844 Radius correction messages suppress Byte 1
 - bit0 0 M1154 release
 - 1 M1154 is suppresses
 - bit1 0 M1155 release
 - 1 M1155 is suppresses
- P8845 Inserting sets/intersections with werkzeugradius-Korrektur.
 - at outside edges sets are always inserted.
 - 0 in the case of direction deviation over 120 degrees sets are inserted under 120 degrees intersections are calculated.
 - 0...180 [degrees] in the case of direction deviations, which are larger than the input degree number, sets are inserted

and in the case of direction deviations, which are smaller than the input degree number, intersections are calculated.

Example:

Direction deviation 120° and degree number of 110: Circle is inserted. Direction deviation 120° and degree number of 130: Intersection is calculated.

Program controlling parameters

P8846 Spline modification

0 or -- 3D-spline (standard)

<>0 5D-spline switched on byte 1 logical axis paragraph of the 4. spline axis byte 2 logical axis paragraph of the 5. spline axis

1., 2., 3. Spline axis are specified over G17, G18, G19.

- Example: P8846:\$0604 means
 - 4. Spline axis is 4th logical axis
 - 5. Spline axis is 6th logical axis

P8847 Spline modification

- 0,--or0,5 Standardspline
- 0,5...2 Spline modifies
- i.e. decaying the Splines is influenced.
- 0,5 Flatspline
- 0,85 Spline decays more

Effectiveness becomes clear with large bracket steps.

8.5 Standards channel parameters (continued)

Program controlling parameters

Feed increase or feed degradation with convex or concave sections

- P8848 Feed dynamics convex Input: [0-100% positively or negatively] Feed is proportionally increased or lowered.
- P8849 Feed dynamics concave Input: [0-100% positively or negatively] Feed is proportionally increased or lowered.

When inserting values in P8848 and P8849 the following formula applies:

- F calculated feed
- F_p programmed feed in the NUMERICAL CONTROL program
- R outline radius
- WR radius of the tool
- $F = F_p * (1 + (P8848 \text{ or } P8849)/100 * (P8850-R)/(P8850-WR))$ with R > P8850 is F = F_p

P8850 Feed dynamics

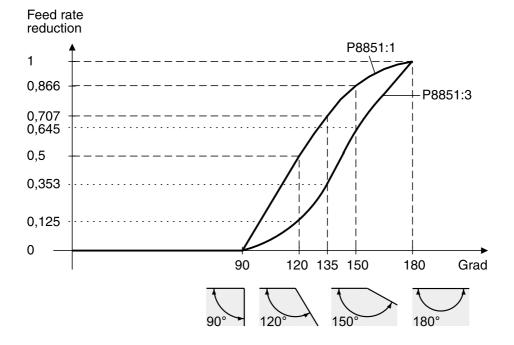
0 or -- Feed dynamics switched off

- 1 With switched on werkzeugradiuskorrektur the feed becomes the actual path adapted,
 - i.e. the programmed path feed applies to the edge contact tool.
- >1 Petition of the outline Referenzradiuses, starting from which no feed modification one executes. P8848 and P8849 actively.

Program controlling parameters

P8851 Corner dynamics [Input: 0...10]

0 or -- Standard corner dynamics actively


<>0 Corner dynamics

-1 Switchoff

Function of the standard corner dynamics

When approaching a corner, the contour feedrate is reduced in dependancy of the corner angle, that means slow down before corners. Because of the corner angle, a reducing factor is effective (cos), which results in the contour feedrate before the corner when multiplying with the programmed feed rate.

Example:	Cornerangle	Cornerfeed reduction at P8851:1 at P8851:3		
	≤90 degree	0	0	
	0	0	0	
	120 degree	0,5	0,125	
	135 degree	0,707	0,353	
	150 degree	0,866	0,649	
	180 degree	1	1	

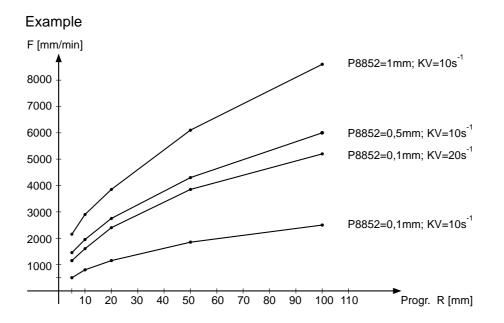
Function corner dynamics

At P8851>0, the standard reducing factor is raised to a power with the content of P8851. The larger P8851 is, the more it is slowed down before corners.

Program controlling parameters

P8852	Circle dynamics				
	0 or C	ircle dynamics switched off			
	<>0	Circledynamicsactive			
		input value permissible path deviation	[mm]		
		function reduction of the feedrate at circular interpolation			
	Atcircul	ar interpolations (G02/G03) an internal circle feed rate is calculate	d with the		

At circular interpolations (G02/G03), an internal circle feed rate is calculated with the help of the permissible path deviation which is limiting the feed rate that is programmed in the NC program.


Internal circle feed rate is dependant of

- -programmed radius
- -KV factor

-P8852

Remark:

P8852 always has to be smaller than the programmed radius, if not error message M1237 appears

Program controlling parameters

P8853		Preset coordinate mode at NC program start 0 or No coordinate mode selected 49 NC program is starting with the indicated coordinate mode 49	
P8854	Radius.com 0 1	tangentiellem contour course	
P8855	Byte1: 0 1 Byte2: 1 Byte3:	 0 Measurement position with respect to save the machine position 1 Measurement position with respect to save display position (with ramping) 8yte 2: 1 Measurement position save position with respect to machine (for M26 abort without ramp) 8yte 3: 	
P8856	Internal parameter (zero point setting CNC < —> Bediendeld)		
P8857	0 or Outlin <>0 Input value Function	reduction of the feed drive path (G1, G2, G3, G50)	[mm]
	The programmed points of path are connected with sets. Thus the calculated circle radii form the basis for one possible path feed reduction. To calculation see P8852.		
P8858	Definition of rapid traverse (G00) Rapid traverse rate (see P8816) 0 or Rapid traverse always with exact stop, i.e at the end of record feed = 0,		
	 lag distance < exact stop Rapid traverse always with feed stop i.e at the end of record feed = 0, 		
	2	for lag distance < exact stop is not waited Rapid traverse no stop end of record handling as with (G1, G2, G3, G50)	

Program controlling parameters

P8859	G92-Modifikation Parameter must be settinged before the NC program start! Byte 1				
	bit0	0	G92-Verschiebung rotates with 1. Rotation axis		
		1	G92-Verschiebung no rotating with 1. Rotation axis		
	bit 1	0	G92-Verschiebung is turned by G45 (starting from version 090)		
		1	G92-Verschiebung is not driven by G45		
	bit2	0	G92-Verschiebung does not work kummulativ G92-Verschiebung resets pending G92-Verschiebung of all axes.		
		1	G92-Verschiebung works axis kummulativ		
			(effect only on programmed axis)		
			pending G92-Verschiebungen not programmed axes are preserved.		
	Byte2bit0	0	I/J/K programming works in accordance with more up-to-date G90/G91 programming		
		1	I/J/K programming always works in G91		
P8860	G95-Modifi	kation			
1 0000	Byte 1	Nation			
	\$xx	0	G95 acquisition data concerning spindle data 1 (P11640)		
	φιστ		G95 reference spindle from spindle data 1-8		
	Byte 2	-			
	\$xx	1-80	G95 acquisition data bezueghlich coupling data 1-8		
			(* tooth number of masters/tooth number of Slave)		
P8861	Feedmodif	icatio	n for not interpolated axes		
1 0001			P8893<>0;		
	0 or	•	eed concerning absolute feed P12122		
	•••	1	Equal axis feed programmed path feed in the NC program		
		2	Axis feed equal programmed path feed proportion everything		
			in the NC Progroramm more programmieter (not interpolated axes)		
			i.e Axis final positions are achieved at the same time.		
P8865	Channel-sr	acific	definition of the Overrides for internalation rate		
1 0000	Channel-specific definition of the Overrides for interpolation rate 0 or Default Override 1 (1-8)				
	0.01	2010	Observe:		
			Override Definitions in the axis data (P12125) are superordinate!		

8.5	Standards channel parameters (continued)				
Program o	controlling	parameters			
P8866	Channel-specific definition of the Overrides for relative velocity 0 or Default Override 1 (1-8) Observe: Override Definitions in the axis data (P12126) are superordinate!				
P8867	Channel-s 0 or	specific definition of the Overrides for absolute speed Default Override 1 (1-8)			
	Note: Ove	erride Definitions in the axis data (P12127) are superordinate!			
P8870	Parameter P88700 Bit0 Bit1 : Bit31	h modification (describe from P8871) r contains bit information P8871 is not described 1 P8871 kummuliert path components of the ßt logical axis 1 P8871 kummuliert path components of the 2nd logical axis 1 P8871 kummuliert path components of the 32nd logical axis			
P8871		tive path length (e.g. for service life monitoring)			
P8880	Axischang 0 or Swit 1 2	ge, switch on, switch off tched off Axis change on Axis replacement for AUTO -> Delete HAND switching (by interpolator)			
	If an axis change is switched on, the display position is exchanged.				
	same phys Zero point	shifts from G53 to G59 effect on the physical axes, they remai sical axis at an axis change. shift G92 and correction G44 effect on logical axes and are by the axis exchange.	n at the influenced		

Program controlling parameters

P8881 Exchange the two physical axes Byte 1: on axis Byte 2: from axis Input of the logical axis numbers

> Example: P8881:\$0106 P8882:\$0601 i.e. axis change between axis 1 and axis 6

Programmed commands in the NC program for 1st axis are transmitted to 6th axis, for 6th axis are transmitted to 1st axis.

- P8882 Axis change
- P8883 Axis change

P8889

P8890 Tangential axis 0 No tangential axis available in the channel 1-32 logical axis number The here indicated axis becomes tangential the programmed path of the NC program adjusted.

P8891 Axis specific block locking Bit 0 1 1 st logical axis with axis-specific block locking

Bit 1 1 2nd logical axis : Bit 31 1 32nd logical axis

Function:

If the axis-specific block locking is selected, executing the NC program in the interpolator is stopped if axes should be moved which are selected with the axis-specific block locking.

Program controlling parameters

P8892	Axis reflection			
	Parameter contains bit information			
	Bit 0	1	1. logical axis reflect	
	Bit 1	1	2. logical axis reflect	
	:		:	
	Bit 31	1	32. logical axis reflect	

Mode of operation: One reflects around the actual machine position P12150. Is modified thus the debit position P12151 of +<->-; and the indicator position P12154 of +<->-; e.g.. P12154: 150,0 P12154 becomes: -150.0 With programmed positive drive, the axis moves around this amount in negative direction.

Parameter is reset with each mode change after HAND.

P8893 Traverse axis not interpolating

Parameter with bit information

- Bit 0 1 1 st logical axis with axis-specific block locking
- Bit 1 1 2nd logical axis
- Bit 31 1 32nd logical axis

Mode of operation:

During the processing of a NC program in the Interpolator, the settinged axis becomes from the interpolation removes and parallel (as absolute position with feed P12122... or with progr. To path feed see P8861 driven). At the NC end of record an exact stop requested waits the CNC to all axes (also the not interpolated) in position, or with not interpolated axes and programmed Vorposition P12113, this is achieved

Parameter is reset in each switching on check.

Program controlling parameters

P8894		ntains bit information 1. logical axis no Achsreduct			
	Bit 31 1	32nd logical axis			
	Mode of operation: During processing of a NC program the axes indicated here become with the calculation of the feed dynamics (P8851) does not consider, or with programmed path feed (see P8861) proceed.				
	Parameteris	reset in each switching on routine.			
P8895	In P8895==0 If P8895>0: E Bit 0 0 N Bit 0 1 R Bit 1 R 	t position recording released : all axes in the channel be released (default) : nable of individual axes (parameter with Bitinfos) lot released first logical axis measurement position recording .eleased first logical axis measurement position recording teleased second logical axis measurement position recording			
	Bit31 R	eleased 32. logical axis measurement position recording			
P8899	0 Pathop	system modification (see P11830 etc) eration / as programmed, to axes drive with bracket proportions)			
	1 Axis operation (drive display with bracket proportions, of axes as programmed)				

8.5	Standard channel parameters (continued)
-----	---

Real time - Information block analysis

P8900 P8901	Actual program numbers of the NC - program Actual block number of the NCS - program
P8904	Actual cycle number
P8905	if cleared, no cycle active. Actual block number in the cycle if cleared, no cycle active.
P8906	Actual program number when NC program is aborted - is loaded with the actual program number when NC program is aborted - is written 0 at program end with M30
P8907	Actual block number when NC program is aborted - is loaded with the actual program number when NC program is aborted - is written 0 at program end with M30
P8910	Faulty program - When the actual NC - program is aborted by the NC - interpreter (because of error message) the faulty program, which has led to the abort, is indicated here.
P8911	Faulty block - When the actual NC - program is aborted by the NC - interpreter (because of error message) the faulty block, which has led to the abort, is indicated here.
P8912	Actual sub-program plane
P8913	Actual sub-program call up, program number Here the actual program number is placed when switching to a sub-program.
P8914	Actual sub-program call up, block number Here the actual block number is placed when switching to a sub-program.
P8918	
P8919 P8920	J
P8921	R
P8925	S1 programmed in NC - block
P8932	S8 programmed in NC - block

8.5 Standard channel parameters (continued)

Real time - Information block analysis

P8934 P8935 P8936 P8937 P8938	Programmed loop counter Actual loop counter Programmed feedrate F Programmed block end feed Actual feed F (of the interpola			
P8940	Actual interpolation mode 0 G00 1 G01 2 G02 3 G03		G03 (to the Pl	LC) (PLC:G00_K1) (PLC:G01_K1) (PLC:G02_K1) (PLC:G03_K1)
P8941 P8942	Programmed dwell G04 Actual dwell G04 When running a dwell (G04) p the remaining dwell is indicat	programmed in the	NC-program,	[s] [s]
P8943	Actual rotating direction circu	ılaraxis	G05/G06/G07	
P8945 P8946	Actual polar coordinate progr Actual contour programming	•	G10/G11 G12	
P8947 P8948	Actual tangential axis Actual polar transformation		G13/G14 G15/G16	
P8950	Actualinterpolationplane		G17/G18/G1	9
P8951 P8952 P8953	Axis 1 Axis 2 Axis 3			
P8958	Actual exact stop modal		G28/G29	
P8964 P8965 P8966 P8967 P8968	Actual tool - radius - function Actual axis correction Actual rotating on / off Actual co-ordinate system Actual		G40/G41/G42 G43/G44 G45/G46 G47/G48/G49 G50/G51/G52	9
P8969	Actual zero pointes Content: G53G59		G53G59 (actual zero point - sh	iftseeP12155)

8.5 Standard channel parameters (continued)

Real time - information block analysis

P8970 P8971 P8972 P8973 P8974 P8975	Actual reflecting on Actual reflecting on Actual feedrate 100% Actual Actual corrections switched off Actual	G61 G62 G63/G64 G65 G66 G67/G68/G69
P8978	Actual absolute/chain dimension	G90/G91
P8979	Actual zero point - shift Content: 0 no G92 - shift active 92 G92 - shift active	G92
P8880 P8981 P8982	Actual feedrate definition actually Actual number of revolution mode spindle Actual end feedrate	G93/G94/G95 G96/G97/G98 G99
P9080	Tool group number (T-No.)	
P9083	Tool Sub record (selected)	
P9090 P9091 P9092 P9093 P9094	Radius of the tool Length of the tool Radius correction Length correction Type of tool (active quadrant 09)	

Real time - data blocks

Parameters are pre-allocated with program start with 0

P9100	Actual G92 shift 1st. axis	[mm]
P9101	Actual G92 shift 2nd. axis	
:		
P9131	Actual G92 shift 32 nd. axis	
:		
:		
P9199		

8.5 Standard channel parameters (continued)

Preanalysis-information block of the block interpreter

P9300 P9301 P9303 P9304 P9305	Actual program numbers of the block interpreter Actual block number of the bliock interpreter Sub-program - plane Actual cycle number of the block interpreter If cleared, no cycle in the block interpreter. Actual block number in the cycle of the block interpret If cleared, no cycle in the block interpreter.	ter
P9318 P9319 P9320 P9321 P9322 P9323	l J K R T-number T-Sub-number	
P9325	S1	
: P9332	S8	
P9334 P9336	Loop depth M24 Programmed feedrate F	
P9340	Type of interpolation programmed 0, 1, 2, 3, 50, 51, 52 Contents with program start 1	G00/G01/G02/G03 G50/G51/G52
P9341	Retentiontimeprogrammed	G04
P9343 P9344 P9345	Direction of rotation programmed round axis Programmed exact stop Polar coordinates programming programmed 10, 11 Contents with program start 11	G05/G06/G07 G08/G09 G10/G11
P9346	Outline path programming programmed	G12

8.5 Standard channel parameters (continued)

Preanalysis-information block of the block interpreter

P9350	Interpolation level programme 17, 18, 19, 117	d	G17/G18/G19/G117
	Contents with program start	17	
P9351 P9352 P9353	Axis 2(2nd principal axis)	contents of logic	cal record number cal record number cal record number
P9358	Programmed exact stop moda 28,29 Contents with program start	l 29	G28/G29
P9364	Tool offset compensation prog 40, 41, 42	rammed	G40/G41/G42
	Contents with program start	40	
P9365	Programmed axis correction 43,44		G43/G44
	Contents with program start	43	
P9366	Programming rotation in/out 45,46		G45/G46
	Contents with program start	46	
P9367	Programmed coordinate syste 47, 48, 49, 147		G47 G147
	Contents with program start	147	
P9369	Programming actual zero point 53, 54, 55, 56, 57, 58, 59, 153, 1 Contents with program start		G53 G159
P9370	Programming reflecting 60,61	00	G60/G61
	Contents with program start	60	
P9371	Programming reflecting 60,62	22	G60/G62
	Contents with program start	60	

8.5 Standard channel parameters (continued)

Preanalysis-information block of the block interpreter

P9372	Programmed feed 100% Feed override Contents with program start	G63 G64 64	G63/G64
P9374	Programmed corrections swit	tchedoff	G66
P9378	Programmed absolute measu 90, 91 Contents with program start	ure/chainingabsolute 90	G90/G91
P9379	Zero shift programmed active 92 Contents with program start	ly 92	G92
P9380	Feed definition programmed Contents 94,95 Contents with program start	up-to-date 94 (mm/min)	G94, G95
P9381	Type of speed programmed s Contents 96, 97 Contents with program start	pindle G96 97 (U/min)	6, G97

8.5 Standard channel parameters (continued)

Preanalysis data blocks

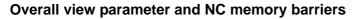
P9500 P9501 :	Actual G92 shift 1st. axis Actual G92 shift 2nd. axis	[mm]
P9531 : :	Actual G92 shift 32nd. axis	

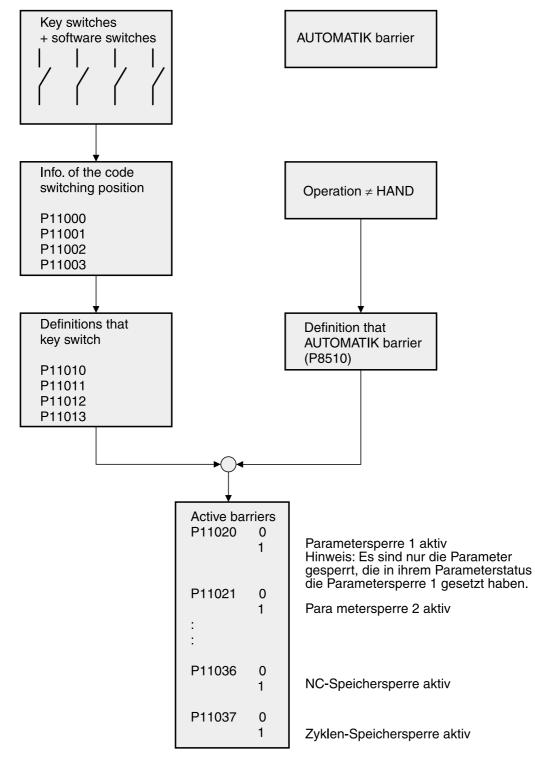
P9699

Preanalysis NC-Block - informations

P9700	Programmed position 1st. Axis			
P9731	Programmed position 32nd. Axis			
P9732 P9733 P9734 P9735 P9736 P9738 P9739	l J K R T f F			
P9740	G-function 1			
P9747 P9748	G-function 8 G-function	enlargementfield		
P9750 P9761 P9762	M-function 1 M-function 1 M-function 1	enlargementfield 1 enlargementfield 2		
P9771 P9772 P9773	M-function 8 M-function 8 M-function 8	enlargementfield1 enlargementfield2		
P9780	Speed 1			
: P9787	Speed 8			
P9790 : P9799	Customized cycl see P8642 Customized cycl			
P9800 : :	Tool data - interfa - Interface to the l - Actual spindle to - Actual active da	PLC pol-datablock		

P9999


8.6 System parameters


Key - switch - information

The following parameters are copies of the key-switches.

- P11000 Key-switch 1 (Info) 0:Switch open 1:Switch closed With the key-switch 1 the conduct of the starting routine is influenced. P11000:0—>ESR must be confirmed with pressing the key P11000:1—>ESR runs automatically, in so far as no errors appear. (e.g.: parameters def., or NC-memory def.)
- P11001 Key-switch2
- P11002 Key-switch3
- P11003 Key-switch4
- #P11006 Software-Sperre3
- #P11007 Software-Sperre4
- P11008 Software locking 1
 - 0 notactive
 - 1 active lockings activated according to P11018.
 - -1 release superordinate release of the barriers defined in P11018
- P11009 Softwarebarrier2

8.6 System parameters (continued)

Key - switch - definitions

Definition, which locking is selected with the switch.

- P11010 Key-switch 1 (see also P8510/P8511) Observe With activated parameter barrier - the parameter status is to be described nevertheless, - the PLC can change nevertheless the parameter value.
 - Byte 1 Bit 0 parameter locking 1 (see also parameter status byte 3) Bit 1 parameter locking 2 (see also parameter status byte 3) Bit 2 parameter locking 3 (see also parameter status byte 3) Bit 3 parameter locking 4 (see also parameter status byte 3)
 - Byte 2 Bit 0 Custom lock 1 Bit 1 Custom lock 2 Bit 2 Custom lock 3 Bit 3 Custom lock 4
 - Byte 3 Bit 0 NC memory locking Bit 1 Cycle memory locking
 - Byte 4 Editing lockings of the MMI's Bit 0 editing locking parameter mantissa Bit 1 editing locking parameter status Bit 2 editing locking axis/spindle/coupling data Bit 3 editing locking zero point data Bit 4 editing locking tool data Bit 5 editor OFF locked
- P11011 Key-switch2
- P11012 Key-switch3
- P11013 Key-switch4
- P11018 Software lock 1
- P11019 Softwarelock2

Active lockings

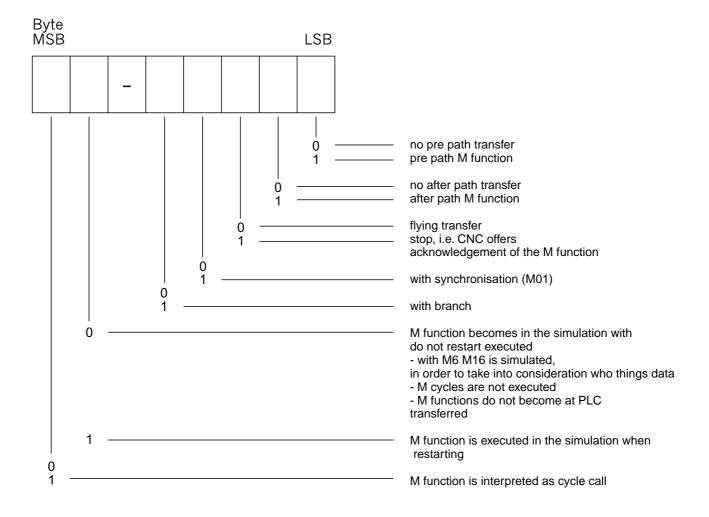
- P11020 0 Locking not active
- : 1 Lockingactive
- P11049

This area is updated with each modification of a key switch status and each mode change.

- P11020 System-parameter-locking1
- P11021 System-parameter-locking2
- P11022 System-parameter-locking3
- P11023 System-parameter-locking4
- P11028 Customized. Block 1 Status
- P11029 Customized. Block 2-Status
- P11030 Customized. Block 3-Status
- P11031 Customized. Block 4 Status
- P11036 NC memory locking
- P11037 Cycle memory locking

Editing lockings of the MMI's

- P11044 Editing locking parameter mantissa
- P11045 Editing locking parameter status
- P11046 Editing locking axis/spindle/coupling data
- P11047 Editing locking zero point data
- P11048 Editing locking tool data
- P11049 Editor OFF locked


8.6 System parameters (continued)

Definitions of the M - functions

Maximum 200 system overlapping M - functions are programmable (M000...M199). If more than 200 M - functions are required, those must be defined channel specifically (to M999).

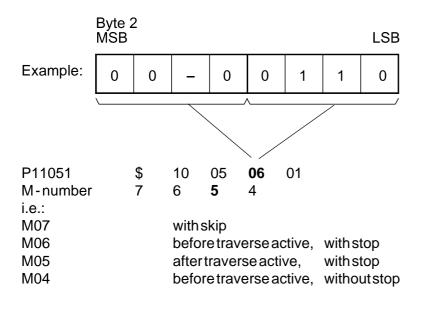
4M-functions are defined per parameter. Input in hexadecimal!

Infofora M-function:

M-functions without stop are transmitted `flying' to the PLC according to definition before traverse, after traverse or both. The NC - program runs continuously.

8.6 System parameters (continued)

M-functions with stop are transmitted to the PLC according to definition before traverse, after traverse or both. Axes run directly before the transfer of the M-function approach their end position with exact-stop. The NC-program sequence is stopped until the M-function is confirmed. The program pre analysis continues working. The confirmations are controlled in the PLC-program with enable block (SAFREK1). Therefore the corresponding marker of a M-function must be connected with stop with enable block.


M-functions with skip work always before traverse with stop! The traverse can be cleared at any time through the single - confirmation of the programmed M-function. When clearing the delay traverse, the measuring - position - parameters are written. In this case the NC program branches to the programmed skip target.

If the skip-M-function is not confirmed, the programmed NC-block is processed completely and switched on to the next block. Marker of a M-function with skip in the PLC may not be connected with enable block (SAFREK1).

M-Function as cycle. If this bit is set in the M-function - definition, no M-function code is sent to the PLC, but a cycle with the corresponding number is called up, i.e. M234 starts Z234.

At this definition the other definitions of this M-function are not considered (before traverse, after traverse or with skip).

The programmed M-function must be programmed without extension (e.g.: M1234.56 is not allowed). The cycle becomes active at the block end. The M-function number must be larger than 30!

Note: Modifications in P11050... becomes with a mode change by HAND after AUTO effectively.

8.6 System parameters (continued)

Definitions of the M - functions

P11050M	03	02	01	00
P11051M	07	06	05	04
P11052M	11	10	09	08
P11053M	15	14	13	12
P11054M	19	18	17	16
P11055M	23	22	21	20
P11056M	27	26	25	24
P11057M	31	30	29	28
P11058M	35	34	33	32
P11059M	39	38	37	36
P11060M	43	42	41	40
P11061M	47	46	45	44
P11062M	51	50	49	48
P11063M	55	54	53	52
P11064M	59	58	57	56
P11065M	63	62	61	60
P11066M	67	66	65	64
P11067M	71	70	69	68
P11068M	75	74	73	72
P11069M	79	78	77	76
P11070M	83	82	81	80
P11071M	87	86	85	84
P11072M	91	90	89	88
P11073M	95	94	93	92
P11074M	99	98	97	96
P11075M	103	102	101	100
P11076M	107	106	105	104
P11077M	111	110	109	108
P11078M	115	114	113	112
P11079M	119	118	117	116
P11080M	123	122	121	120
P11081M	127	126	125	124
P11082M	131	130	129	128
P11083M	135	134	133	132
P11084M	139	138	137	136
P11085M	143	142	141	140
P11086M	147	146	145	144
P11087M	151	150	149	148
P11088M	155	154	153	152
P11089M	159	158	157	156
P11090M	163	162	161	160
P11091M	167	166	165	164
P11092M	171	170	169	168
P11093M	175	174	173	172
P11094M	179	178	177	176
P11095M	183	182	181	180
P11096M	187	186	185	184
P11097M	191	190	189	188
P11098M	195	194	193	192
P11099M	199	198	197	196

Internal oscilloscope

- P11100 Amount of active tracks 1 to 4
- P11101 Parameter address for track 1
- P11102 Parameter address for track 2
- P11103 Parameter address for track 3
- P11104 Parameter address for track 4
- P11110 Trigger track 1 to 4
- P11111 Trigger level
- P11112 Trigger slope
 - 1 trigger on rising edge
 - -1 trigger on dropping edge
 - 0 triggerimmediately
- P11113 Scanningtime

P11114 Oscilloscope Start/Stop

- 0 stop
- 1 start
- 2 automatic new start

P11115 Triggerpoint reached

- 0 not reached
- 1 reached

[ms]

8.6 System parameters (continued)

Graphics parameter

- P11120 Origin of the co-ordinate system screen X
- P11121 Origin of the co-ordinate system screen Y
- P11122 Origin of the co-ordinate system screen Z
- P11123 Zoom-size (P11123 small_>drawn picture large)
- P11124 Graphics display
 - 0 X,Y-Plane
 - 1 Z,X-Plane
 - 2 Y,Z-Plane
 - 3 3-D
- P11125 Xtilt
- P11126 Ztilt
- P11127 Forward/backward of the display
- P11128 Displaybits

Byte 1

- Bit0 free
- Bit1 free
 - Bit2 free
 - Bit 3 1 display with actual path
 - Bit 4 1 display with zero point
 - Bit 5 1 display with circle centre points
 - Bit 6 1 display with bores
 - Bit 7 1 display with direction arrows

System commands / informations

P11130	Selecte	edlanguage
	0 or 1	stlanguage
	1	2nd language

:

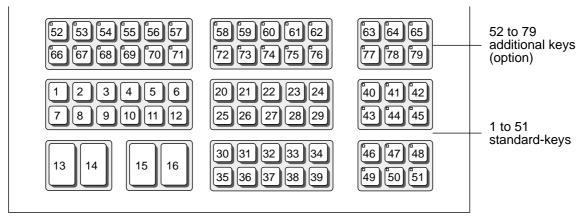
:

- P11131 Default language If the language text accord. to P11130 is not available, the default language is used. 0 or -- 1st language 1 2nd language : :
- P11132 Teachpaneloperating mode 0 or -- Teachpaneloff 1 Teachpanelswitched on

P11133 Teachpanelkeypressed/unpressed

Byte 1 Key code (see list from P11200 on)

- Byte2 0 unpressed
 - 1 pressed
- Byte 3 Channel number 1..8
- P11134 LED'steachpanel (planned)
- P11135 Desired channel in the surface For multi-panel operation:
 - Byte1 desired channel panel 1
 - Byte2 desired channel panel 2
 - Byte3 desired channel panel 3
 - Byte4 desired channel panel 4


P11136 Selected channel in the surface Byte 1: channel selected panel 1 Byte 2: channel selected panel 2 Byte 3: channel selected panel 3 Byte 4: channel selected panel 4 In the descriptions of P11136 via the PLC individual bytes can be set without changing the other bytes! e.g.: P11136 : \$0203 describe P11136 via PLC with \$0400 P11136 is to \$0403; that is, Byte 1 is unchanged! see also P11265

System commands / information

P11137		l code pressed / un er is transmitted to t		ed (only CNC keys) .C)
	Byte 1	Key code		
	Byte 2			
		1 pressed		
	Byte 3	Channelnumbe	r18	
	Byte 4	Panelnumber	0	1. Panel (default)
			1	2. Panel

Key numbers in CNC 900 and CNC 900C

Keynumbersin	Churo CNC
CNC 902/CNC 903 CNC 904/CNC 905 CNC 910/CNC 920 CNC 930/RC 910	40 41 42 43 44 45 46 47 20

8.6 System parameters (continued)

System commands / information

P11138 LEDs 1..12 (bit information)

 -	\		
Byte 1	bit 0	0	LED key 40 out
		1	LED key 40 on
	bit 1		key41
	bit 2		key 42
	bit 3		key 43
	bit4		key 44
	bit 5		key 45
	bit6		key 46
	bit7		key 47
Byte 2	bit 0		key 48
-	bit 1		key 49
	bit 2		key 50
	bit 3		key51
			•

P11139	LEDs (bit ir	LEDs (bit information) extended				
	Byte 1	1 bit0 0 LEDkey52out				
			1	LED key 52 on		
		bit 1		key 53		
		bit2		key 54		
		bit3 key55				
		bit4 key56				
		bit5		key 57		
		bit6		key 58		
		bit7		key 59		
	Byte 2	bit0		key60		
		bit 1		key61		
		bit2		key 62		
		bit 3		key 63		

8.6 System parameters (continued)

System - memory / Informations

- P11140 Free NC memory
- P11141 Amount of NC programs
- P11142 Number of NC programs
- P11145 Number of latest edited NC program
- P11146 Number of latest edited NC block
- P11149 Display mode in the NC directory
 - 0 There appears no Z programs in the directory-list
 - 1 In the directory ALL programs are displayed.

P11150 Display mode 2 in the NUMERICAL CONTROL Direktory

- Byte 1 bit 0 0 Display of the time stamp and the file size
 - 1 Display of the 1. NC block
 - 2 Displays the date (useful for NC file name length > 14)
 - 3 Display the file size (useful for NC file name length > 14)

Byte 2 bit 00 Assortment of the NC Direktories after program numbers

- 1 Assortment of the NC Direktories alphanumerically Note: In the case of modification of the assortment algorithm command the consisting Direktory chain to be again created! (q10:7)
- P11152 First block number when numerating a NC program If not loaded, the first block number is 10.
- P11153 Block step width when numerating a NC program If not loaded, the step width is 10.
- P11154 Record number of the NUMERICAL CONTROL of program, starting from which that number again one starts. NC blocks are changed starting from this record number. If not loaded: again number starting from the first record number.

8.6 System parameters (continued)

System - memory / Informations

P11158 Proma-menuControl

Byte1:

- Bit1 0 (default)
 - When you call the PROMA diagnostics (press '!') Is returned to the last diagnostic image
 - 1 When you call the PROMA diagnostics (press '!') That basic diagnostic image is always returned

P11159 OVERLAY insertion in operating panel surface 0 or -- Overlay operation reset 1.. Overlay operation display

- System Clock
- P11160 Second
- P11161 Minute
- P11162 Hour
- P11163 Day
- P11164 Month
- P11165 Year
- P11166 Weekday 0 Sunday
 - 1 Monday
 - 2 Tuesday
 - 3 Wednesday
 - 4 Thursday
 - 5 Friday
 - 6 Saturday
- P11169 100 ms timer parameter is incremented in stroke of 100 ms

8.6 System parameters (continued)

I/O circulation Interface 1

P11170 Interfaces Mode (planned, I/Oetc.)

P11171 Interfaces Selector (planned, default=operating panel COMxx)

- 0 hard disk operating panel
- 1 operating panel COM1
- 2 operating panel COM2
- 3 operating panel COM3
- P11172 Baudrate standard setting 9600 [Baud] max 38400
- P11173 Databits standard setting 8
- P11174 Stopbits standard setting 2 P11175 Parity check standard setting 0 0 no 1 odd 2 even
- P11176 Handshakestandardsetting0 0 RTS/CTS 1 Xon/Xoff
- P11177 File end signal standard setting 04 (EOT) Input ASCII sign code Function At an output (IO-OUTPUT), the file end sign is put as last sign. At an input (IO-INPUT) the I/O is finished with a received file end sign.
- P11178 Controlling information
 - Bit 0 0 Programs can be overwritten
 - 1 Programs cannot be overwritten over I/O inputs. A message seems.
 - Bit1 0

1 IO circulation program output 785 - compatibly

i.e.. Program number is provided with leading zeros

Bit2 0

1 IO traffic: Parameter output parameters without text

I/O circulation Interface 1

P11179 Block test character with I/O traffic With P11179 the block test character is switched with I/O IN/COutputs. Method of operation: With activated block test character the data link becomes between operating console and external data terminal secured. practical in connection with the archiving program NCARC.EXE. The block test character is stored in no file, but in an educated manner from the sender / recipient to the real time in each case / checks.

0 or -- no block test character

I/OINPUT

The block test character of the data which can be read in is optional. If a block test character is received, it is checked. With not correct test character: M1115 and abort of EA traffic.

I/OOUTPUT

no block test character with data output.

1

block test character activates

I/OINPUT

All read in data must with the block test character provided to be. With missing test character: M1114 and abort of EA traffic With not correct test character: M1115 and abort of EA traffic.

I/OOUTPUT

All data which can be output become with the block test character provide.

I/O circulation Interface 1

1

5

- P11181 Parameter output mode Parameter is reset after each knocked against parameter output!
 - 0 or -- Parameter EA output from parameter memory
 - Parameter EA output from FLASH Memory
 - output: D+, i.e. status are also settinged when rereading in
 - Parameter EA output of all parameters from the parameter memory
 - output: D+, i.e. status are also settinged when rereading in

q0	 q999	
q1000	 q1999	
q2000	 q	(number of axes)
P0	 P5xxx	(userblock 1aller of channels)
P7000	 P9999	(fixed channel parameters of all channels)
P20000	 P2xxx	(userblock2ofallchannels)

- 10 output of the SAMPLE buffer (see also P11270...)
- 15 output of the ZSM recordings (see P7950...)
- 50 output of the oscilloscope memory
- outputformat: Fixedpoint(ulongs)
- 20 output of the SERCOS Data which can be protected
- 21 output of all SERCOS Data
- 22 output by SERCOS Einzelparameter
- 50 output of the oscilloscope Speichers output format: Fixed point (ulongs)
- P11183 Info. parameter actual program number I/O input/output or current channel number with parameter I/O input
- P11184 Info. parameter actual record number I/O input/output or current parameter number with parameter I/O input

8.6 System parameters (continued)

I/O circulation Interface 2

P11185 Interfaces 2 (planned)

P11199

Remote diagnostics (only for ETH CNC)

- P11200 ONLINE/OFFLINE Request 0 switch CNC OFFLINE 1 switch CNC ONLINE P11200 is cleared at every system startup (as of version 144)
- P11201
 current ONLINE/OFFLINE state of the CNC

 0
 CNC OFFLINE

 1
 CNC ONLINE

 P11202
 Entering the message number

 P11203
 ISERVICE IP- address

 ISERVICE IP- address
 ISERVICE IP- address
 - If P11203 == 0, IService IP address from the file: NETCONF is used (from the Version 144)

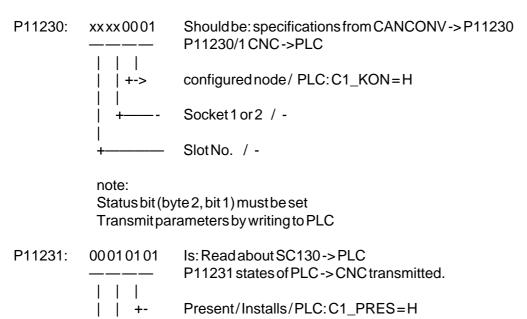
8.6 System parameters (continued)

CAN IO-node

P11209	CAN IO-node
IO-node	11-20 Optional
P11210 P11211 P11212 P11213 P11214 P11215 P11216 P11217 P11218 P11220 P11220 P11221 P11222 P11223 P11223 P11224 P11225 P11225 P11226 P11227	node 11 node 12 " node 13 " node 14 " node 15 " node 16 " " node 17 " " node 18 " "
P11228 P11229	node 20 "

8.6 System parameters (continued)

CAN-IO-node


IO-node 01 - 10 Standard (available)

P11230	node 01
P11231	"
P11232	node 02
P11233	"
P11234	node 03
P11235	"
P11236	node 04
P11237	"
P11238	node 05
P11239	"
P11240	node 06
P11241 P11242	node 07
P11243	"
P11244	node 08
P11245	"
P11246	node 09
P11247	"
P11248	node 10
P11249	"

CAN-IO-node

Definitionspernode/Example:Node01

+----- Status/Ready/PLC:C1_BER=H

+-----General Fault/PLC: C1_KSA=H

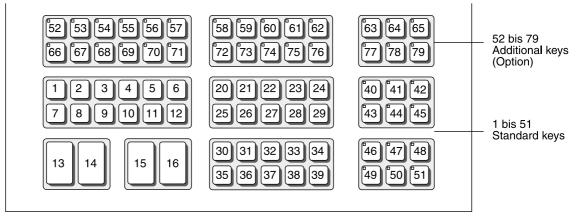
8.6 System parameters (continued)

I/O circulation Information for diagnostic purposes

P11250

Error messages, which are entered into the error message history of the PLC i.e. each detailed error message. (parameter of the PLC is described)

- Byte 1 Message paragraph
- Byte 2 Message paragraph
- Byte 3 Channel number (1...8)
- Byte 4 Axis paragraph (1...32)
- P11251
- P11259 Actual pending error messages of the actually selected channel (parameter of the PLC is described)
 - Byte1 Message paragraph
 - Byte 2 Message paragraph
 - Byte 3 Channel number (1...8)
 - Byte 4 Axis paragraph (1... 32)


8.6 System parameters (continued)

Information for event logging for diagnostic purposes

P11260	Keyinforma	tion (paramete	er by the ope	eratingconsole	one describes)
	total palpation	on printouts in	thisparame	ter are logged	

Byte 1	Keyparagraphor	(CNC keys)
	ASCII character	(keyboard)
Byte20	Keyreleased	(only with CNC Keys)
1	Keypressed	
Byte30		
Byte40	Keyboardkey	
1	Function key	
2	CNCKey	
3	Teachpanelkey	

Key numbers in CNC 900 and CNC 900C

Key numbers in

CNC 902/CNC 903 CNC 904/CNC 905 CNC 910/CNC 920 CNC 930/RC 910

(bur) CNC
40 41 42 43 44 45 46 47
20
21
24
25
23
38
39 22
30 35 37 31 32 33 34 14 15 16

Information for event logging for diagnostic purposes

P11261	Bildname1 CNC Surface (parameter by the operating console one describes)Byte1CHAR1Byte2CHAR2Byte3CHAR3Byte4CHAR4
P11262	Bildname2CNC Surface (parameter by the operating console one describes)Byte1CHAR5Byte2CHAR6Byte3CHAR7Byte4CHAR8
P11263	Error Message History PLC describes P11263 with PLC error messages (M3000.3999) Error messages are stored in the sample buffer With the first describing P11263, P8509 will NOT be recorded more in sample buffer! Byte 1: message number Byte 2: " Byte 3: Channel number (08) Byte 4: axis number (132)
P11264	_
P11265	activated panel in multi-panel operation enabled means: -CNC axes may be moved -NC programs may be started -1 all panels active 0 Panel 1 activated (default) 1 Panel 2 activated
P11266	CNC station number Displaying the definition of "CNCCON" in netconf file 0 no CNCCON-CMD in the netconf file defined; (Stand-alone CNC) 1 "CNCCON 0" in the file netconf defined ==> Station 1 2 "CNCCON 1" in the file netconf defined ==> Station 2
	Parameter is described after each power-on routine by the system.
P11267 P11268 P11269	

Event logging for diagnostic purposes

P11270 Activation of the recording ring buffer (in further Textals SAMPLE buffer marks)

Byte 1

- 0 Events are written into the SAMPLE buffer
- 1 SAMPLE buffer is not no more described
- 100 delete SAMPLE Buffer

Byte 2:

Byte 3:

Bit0:0: Off data logger

1: Data-logger is switched on (only ETHCPU) Sample events are sent to the host (Host: see netconf 'host') On the host, the program must: 'SERVER.EXE' be active. Sample data will be in the file: server.log saved.

With data logger is activated ALWAYS will be:

- -keycodes
- Current screen name

-Logs error messages.

Furthermore, can

-the START/STOP of an NC program will be logged.

(See P11271 for K1; ..)

Bit 1:1: In data-logger mode (only CPU ETH)

Additional recording of the virtual console

(Texts, which are output via the NC program with CMD!)

With active SAMPLE buffer (P11270:0) all CNC Key generally always becomes presses and all messages (CNC messages P8500.. P8503 and SPS messages (P8509 or over P11263) as well as P11279 with a zeitmarke stored. Memory depth corresponds to 100 (083671 before index C) or 2000 (084564) Recordings.

The available recordings can over I/O circulation with parameter output to be read, if before the output the parameter output mode (P11181) = 10 one settings.

Starting from status 082 of 1.2.99

With a function call in the CNC DLL can this SAM polarizing ring buffer as section NC RAM to be specified.

The size of this buffer is freely definable. (number of Samples) The available NC memory is reduced accordingly.

Contents of this static ring buffer remain after switching off that

Controller preserve. (is with back-up battery like the NC memory)

8.6 System parameters (continued)

Event logging for diagnostic purposes

An output could look as follows:

SAM polarizing DATA

Output: DATE: 1. 2,99 Time: 02:12:57

date/time-of-day of the output

hh:mm:ss, ms cmd 1 00:00:00,000 ====== system boot =========

202:08:39,445 PICTURE: INIT 302:08:42,455 PICTURE: A_INIT

3302:11:55,650 C-KEY AX 1 3402:11:56,965 F-KEY F5 3502:11:58,525 KEY '1 '

4202:12:00,655 F-KEY RETURN 4302:12:01,290 F-KEY cursor V

5702:12:08,990 PARACNC->PLC K0 q1137: 65822

5802:12:08,990 PAReq CNC -> PLC K1 q1137:6

6002:12:08,995 PARACNC<—PLC K1 P8703: 1

9702:12:13,820 K0 message: M3498

44802:12:21,015PROG: K1P1000N11160 44902:12:21,015PROG: K1P1000N11170

K1P1000N11160 processing of NC block

83102:12:21,340K1 M30—>PLC, NR in the Satz:0, without branch transfer of m functions at PLC 83202:12:21,340K1 END OF BLOCK CNC—>PLC, CNC WAITS for acknowledgement 83402:12:21,340K1 CNC <-- PLC SAFRE: 1

93402:13:22,540 P11279: 12345

entry over P11279

picture change

picture change

function key F5 PC key '1'

function key RETURN

transfer on modification

parameter transmitted by CNC at PLC

parameter transmitted by CNC at PLC parameter was called by PLC at CNC

parameter transmitted by PLC at CNC

function key cursor

message M3498

CNC key axis selection 1

SAM-POLARIZE-END

Event logging for diagnostic purposes

P11271	Activation of a 0 or		dditional recordings into the SAM polarizing buffer for channel 1 No additional recordings		
	Byte1 (q-para		 Parameter transfers between CNC < —> PLC are recorded. transfers are recorded when channel 1 is enabled) 		
		bit 1	1 Parameter transfers between CNC < —> operating panel are recorded.		
		bit2	1 Parameter with parameter SAM polarizing identifier are recorded. (see parameter status Byte2 Bit8) (parameters from channel 1 become together with		
		bit3	q-parameters recorded) —		
		bit4	1 Mfunctions at PLC, end of block, end of record, Mfunction-acknowledgements and block release are recorded.		
		bit5			
		bit6 bit7			
	Byte 2	bit0	1 beginning of a NC block with Programmnumme becomes recorded. (pre path acknowledgement in the real time)		
		bit 1	0 —		
		•	1 Recording of programmed NC block positions ording in real time (W2)/machine positions to interpolator) ording in Prerecord-feedback)		
		bit2 bit3 bit4	 — — Start/Stop of a CNC program is recorded 1 beginning of a NC block with program number one records. (recording of the preparatory program/record number, pre path) 		
		bit5	1 recording of the positions programmed in the NC block (recording in the advance)		
		bit6 bit7			

Event logging for diagnostic purposes

Byte 3: Bit 0 Bit 1 Bit 2 Bit 3		Recording of generator data communications over S2 at switch: generator_com
Bit4		
Bit 5	_	
Bit6		
Bit7	_	
Byte 4 : Bit 0 Bit 1 Bit 2		
Bit2		
Bit 4		
Bit 5		
Bit6		
Bit 7		
DIL /		

P11272 Activation of additional recordings into the SAM polarizing buffer for channel 2 P11273 Activation of additional recordings into the SAM polarizing buffer for channel 3

- P11274 Activation of additional recordings into the SAM polarizing buffer for channel 4
- P11275 Activation of additional recordings into the SAM polarizing buffer for channel 5
- P11276 Activation of additional recordings into the SAM polarizing buffer for channel 6
- P11277 Activation of additional recordings into the SAM polarizing buffer for channel 7
- P11278 Activation of additional recordings into the SAM polarizing buffer for channel 8

P11279 SAM-POLARIZE-entry

With the describing of P11279 an entry in the SAM polarizing buffer is made.

System diagnostic

- P11280 Activating the interface diagnostic
 - 0 Interface diagnostic off
 - 1 PLC <-> CNC interface diagnostic on

P11281P11289	direction CNC—>PLC
P11290P11299	direction CNC < PLC

P11281	Event counter	CNC—>PLC	
P11282	Channel number	CNC—>PLC	
P11283	Parameter number	CNC—>PLC	
P11284	Parameter content	CNC—>PLC	
P11291	Eventcounter	CNC<-PLC	(q1160 is not indicated and not counted as event.)
P11292	Channel number	CNC <— PLC	,
P11293	Parameter number	CNC <— PLC	
P11294	Parameter content	CNC <— PLC	

System data for Interpolator

P11300	Interpolation nicety Specifies the internal path re 0 preset: 10000 Input 100, 1000, 10000 In the case of a modification				[INC/mm] bestarted.
P11301	Position adjustment timer In the case of a modification	ofthisparar	neterti	ne controller must again	[ms] bestarted.
P11302	DSI timer In the case of a modification	ofthisparar	neterti	ne controller must again	[ms] bestarted.
P11305	Definition of the axis card off In the case of a modification This axis allocation can by m to be made axis-card-indepe 0 or physical axis numberi Example:	of this parar leans of P12 endently.	2003 ially ard 1 2 3	5	
	1 per card slot 4 p Example:	hysical axe 1. axis ca ASM 2. Axis ca AAZ4	ard 1 2 3	ddressed physical numbering 1 2 3 5 6 7 8	

System data for Interpolator

- P11306 Definition for axis cards disable In the case of a modification of this parameter the controller must again be started. 0 or -- physical axis numbering sequentially
 - Bit 0-31 No. of the respective slot e.g.. 0x2 in slot 2 no card (AAZ, DAW, ADW) is detected
- P11308 Input system

0 or -- Input system metrically

- 1 Input system inch, post-decimal positions around a position extends
- 2 Input system inch, post-decimal positions around two positions extends
- 3 Input system inch, post-decimal positions around three positions extends

Inchswitching

With 'parameter reset' in the switching on routine becomes

- in the zero point data array,

-all kanalgemappten Achsparametern, (P12153..12157...),

-the tool data interface, (P8110/11/12/13 and P8160/61/62/63),

- and the feed parameters in the channel

the inch bit in the parameter status settinged.

With the axis data of round axes no inch information is settinged. If one is linear axis without inch switching to be, then if the inch bit is to be removed in the q2x54.

After switching the system of units of INCH->METRIC or METRIC->INCH only these parameters become into respective the different one.

System of units converted, which the ZOLL bit in the parameter status settinged.

Step-by-step operation:

Incrementation table is preserved, however the actual incrementation becomes always over factor 10 reduces (see also G170/G171).

With activated ZOLL Input system, all channels become into this Input system brought.

P11309 System internal command parameter

Interpolator -> CNC

1 trigger for reference status

Override (1 - 9)

The override allocation is defined depending on the traverse mode per axis (see P12125...).

General: From the operating panel the corresponding override value is written in P11311 (content: 0.. 255). P11311 is a procedure - parameter. In the started system sub-routine the override-schedule is accessed according to P11314 (pointer on table). The result is copied to P11310. P11310 is limited through P11312/P11313.

	Override 1			
P11310	Actualvalue	[%]	valuefromtable	
P11311	Actualvalue		from digital-to-analogue converter	
P11312	Minimumlimit	[%]	e.g. 0%	
P11313	Maximumlimit	[%]	e.g. 120%	
P11314	Pointer on override-tak	ble	-	
	If pointer on override-s	chedule is cl	cleared or =0, the override is active	
	continuously. Pointer-	numbersho	ows on a q-parameter.	
	• • • •			
P11315	Override 2			
D 44000	0			
P11320	Override 3			
D11225	Override4	/Taaahna		
P11325	Overnde 4	(Teachpai	aner)	
P11330	Override 5	(fixed valu	ue 0%)	
111330	OvernueJ	(แก่อน valu		
P11335	Override 6	(fixed valu	ue 10%)	
	01011000	(Inco valu		

- P11340 Override7 (fixed value 50%)
- P11345 Override 8 (fixed value 100%)

8.6 System parameters (continued)

Override (1 - 9)

P11370	Override-table	Amount: Preset 27 values
P11371	0%	
P11372	1%	
P11373	2%	
P11374	5%	
P11375	10%	
P11376	15%	
P11377	20%	
:		
P11397	120%	

8.6 System parameters (continued)

Hand-wheels (1 - 8)

	Hand-wheel 1			
P11400	Hand-wheel connected on axis	(physical axis number)		
	contents: 1 32 physical axis number			
	-1 handwheelintheopera	tingpanelintegrates (e.g.: RC 910)		
P11401	Hand-wheel works on axis	(physical axis number)		
P11402	Activating the hand-whel			
	0 or Hand-wheel not active 1 Hand-wheel active			
P11403	Hand-wheel resolution		[INC/mm]	
	The pulses of the measuring system are q	•		
	Example: resolution 1000, At 1000 INC The sign determines the traverse direction	C1mmisdriven.		
P11404	Actual hand-wheel - multiplier			
	With help of the hand-wheel - multiplier the	hand wheel-pulses are multiplied. 1000 INC -> 1mm distance		
	Example: $P11404 = cleared or 0 or 1$, P11404 = 10	1000 INC -> 10mm distance		
P11405	Switch to next multiplier			
	1 switch to next			
P11406	Pointer on multiplier, parameters is used f	rom the system.		
P11407	Multiplier1	, ,		
P11408	Multiplier2			
P11409	Multiplier3			
P11410	Hand-wheel2			
P11420	Hand-wheel3			
P11430	Hand-wheel4			
P11440	Hand-wheel5			
P11450 P11460	Hand-wheel6 Hand-wheel7			
P11400 P11470	Hand-wheel8			

Couplings (1 - 8)

General: With active coupling the machine dynamics and the max. axis speed of the masters axis and slave axis are adapted to the admissible values

P11480 P11481	Coupling 1 Master - ax Slave - axis	cis	(physical axis number) (physical axis number)			
P11482	Coupling n Byte 1 Byte 2 Byte 3	\$01 \$01	Machine coordinates couplin Rigidity coupling Type of status coupling Differential coupling	ng master < master		
P11483	Couplingn 0 or Coup 1 2 activ	pling co Coup Coup	ation prrection on pling correction off pling correction off, however w	ith coupling e	rror control p	procedure
P11484 P11485	Couplinge Couplinge		nit pervision time			[mm, degree] [ms]
P11486 P11487	Coupling c coupling c					[1/s] [ms]
P11490 P11491	•		position of the Masteraxis position of the Slaveaxis		[mm,	[mm, degree] degree]
P11492 P11493			io - relationship masteraxis io - relationship slave axis			
P11494	Differentia	lconst	ant			
P11495	2 Cou	pling or pling sy	n /nchronization on 90 or P11491)	(PLC	(PLC:KOF ::KOPSYN1	/
P11496		chedo	ed n coupling erformed synchronization		(PLC:K0 (PLC:K0	OPE1) OPSYE1)

8.6 System parameters (continued)

Couplings (1 - 8)

Coupling 2
Coupling 3
Coupling4
Coupling 5
Coupling6
Coupling7
Coupling 8

8.6 System parameters (continued)

Spindle (1	- 8) Spindle 1	
P11640	Spindle works on axis (physical axis number)	
P11641	Reference axis for G96 (physical axis number) If P11641 = 0, then reference position in P11642 is valid.	
P11642	Reference position for G96	[mm]
P11643	e.g. grinding wheel diameter Reference factor for G96 0 or mm/min 1000 m/min	[mm/min]
P11644 P11645 P11646	Maximum speed for G96 Maximum speed for G97 Reference factor for G97 0 or rpm	[mm/min] [rpm] [rpm]
P11647	1 degree/min Definition of speed (G96, G97) Presetting 0=G97	
P11648 P11649	Programmed speed Actual speed	[rpm or mm/min] [rpm or mm/min]
P11650	Spindlein/out0 or Spindle out1Positive direction of rotation-1Negative direction of rotation2Positively spindle reset-2Negatively spindle reset	(PLC:SPIRE1) (PLC:SPILI1) (PLC:SPIRR1) (PLC:SPIRL1)
P11651	reached rotation speed Byte 1	
	\$01: reached rotation speed Byte 2	(PLC:SPIDZE1)
	\$01: Achieved spindle alignment position	(PLC:SPIRPE1)
	Byte 3 \$01 : spindle runs	(PLC:SPILFT1)
	Byte 4 \$01: Speed reached 0	(PLC:SPIDZN1

Spindle (1 - 8)

P11652 Spindle resetting position

P11653	Speed monitoring tolerance limit 0 or actual speed monitoring switched off 1100 i.e. P11651=1 achieves the info. speed settinged if programmed speed equal actual speed and the deviation between actual speed (Messystem) and smaller than the input value is appropriate for programmed speed.	[%]
P11654	Rotational speed reaches 0 monitoring tolerance limit —, 0 off monitoring	(min-1)

1.xx the info: rotation speed fallen below P11651/Byte4=\$01 is set if the actual speed is smaller than the entry value.

P11660	Spindle 2
P11680	Spindle 3
P11700	Spindle 4
P11720	Spindle 5
P11740	Spindle 6
P11760	Spindle 7
P11780	Spindle 8

8.6 System parameters (continued)

Data for Robot-system 1

P11800 Linear axes (physical axis numbers)

At 5 axes transformation (Robot) e.g. the first 3 axes (X, Y, Z) Byte 3, 2, 1 03 02 01 Hex Byte 4 direction change (Bit 3, 2, 1)

At 3 axes transformation e.g. the first 2 axes (X, Y) Byte 3, 2, 1 00 02 01 Hex Byte 4 direction change (Bit 2, 1)

At 6 axes transformatione.g. the first 3 axes (X, Y, Z)Byte 3, 2, 103 02 01 HexByte 4direction change (Bit 3, 2, 1)

P11801 Robots rotation axes (physical axis numbers)

At 5 axes transformation (Robot)e.g. the 4th and 5th axes (A, B)Byte 3, 2, 100 05 04 HexByte 4direction change (Bit 3, 2, 1)

At 3 axes transformation e.g. the 3rd axis (A) Byte 3, 2, 1 00 00 03 Hex Byte 4 direction change (Bit 1)

At & axes transformation (Robot)e.g. the 4th, 5th and sixth axes (A, B, C)Byte 3, 2, 106 05 04 HexByte 4direction change (Bit 3, 2, 1)

P11802 At 5 axes transformation (Robot) Offset x, rotation axis - tool axis

> At3axestransformation Offsetradius, tilt-tool peak

[mm]

Data for Robot-system 1

P11803	At 5 axes transformation (Robot) Offset y, rotation axis - tilt	[mm]
	At 3 axes transformation Offset angle, tilt - tool peak	[degree]
P11804	Offsetz, tool carrier length	[mm]
P11805	Offset, tilt-tool axis	[mm]
P11806	Angle, rotation axis - tilt	[degree]
P11807	Angle, at which the tool is downwards	[degree]

Data for Robot-system 2

P11810	Robot linear axes To contents see P11800	(physical axis paragraphs)	
P11811	Robot rotation axes To contents see P11801	(physical axis paragraphs)	
P11812	Offset x To contents see P11802		[mm]
P11813	Offset y To contents see P11803		[mm]
P11814	Offset z To contents see P11804		[mm]
P11815	Offset, drag axis - tool axis To contents see P11805		[mm]
P11816	Angle, axis of rotation - drag axis To contents see P11806		[degrees]
P11817	Angle, with that the tool downwards sl To contents see P11807	IOWS	[degrees]

8.6 System parameters (continued)

Data for polar-system

P11820	Polaraxis e.g. the firs Byte 3, 2, 1 Byte 4		(physical axis number) es (X, Y) 00 02 01 Hex direction change (Bit 2, 1)	
P11821	Offset	r0	[n	nm]
P11822	Offset	w0	[n	nm]
P11823	Offset	v0	[n	nm]

Data for angle system

- P11830 Angle axes e.g. the first 2 axes (X, Y) Byte 3, 2, 1 00 02 01 Hex
- P11831 Anglevalue

(physical axis paragraph)

[degrees]

8.6 System parameters (continued)

Configuration parameters for robot systems

P11850	Mechanics	
	\$0100	6-Achsen-Knickarmeven
	\$0101	6-Achsen-Knickarm diagonally
	\$0200	3-Achsen-Scara
	\$0201	2-Achsen-Scara

- P11852 Pendulum axis paragraph
- P11853 Pendulum angle

Geometry parameter of the respective robot system

P11854	lever	1
P11855	lever	2
P11856	lever	3
P11857	hand	1
P11857 P11858	hand hand	1 2

8.6 System parameters (continued)

Parameter for joystick

P11880	joystick de	efinition
	Byte 1	Calibrationingnumber
	Byte 2	Slotnumber
	-1	joystick logged on with CNC910 Panel
		(to the activation start system again)
P11881	joystickdi	rection definition
	(with CNC	900 and CNC910)
	Byte11	direction 1 invert
	Byte 21	direction 2 invert
	Byte 31	direction 3 invert
P11882	joystickax	kisselection
	Byte 1	physical axis number direction 1
	Byte 2	physical axis number direction 2
	Byte 3	physical axis number direction 3
	Currentjo	ystick feed is in the P12117.
	Feedvalu	e=(joystick deflection * manual feed)

Parameter for welding seam tracing

P11890 Pointeron table

Parameter for Teachfunktion

P11891 Pointeron table

Parameter for external Robot simulation

P11892 0 Connection off 1 Connection with ROBOT actively

8.7 Axis parameters

Each physical axis occupies a parameter block of 200 parameters.

In the system has physical axis	thearea	In the channel has	the erec
		logicalaxis	thearea
1.	q2000q2199,	1.	P12000P12199,
2.	q2200q2399,	2.	P12200P12399,
3.	q2400q2599,	3.	P12400P12599,
4.	q2600q2799,	4.	P12600P12799,
5.	q2800q2999,	5.	P12800P12999,
6.	q3000q3199,	6.	P13000P13199,
7.	q3200q3399,	7.	P13200P13399,
8.	q3400q3599,	8.	P13400P13599,
9.	q3600q3799,	9.	P13600P13799,
10.	q3800q3999,	10.	P13800P13999,
11.	q4000q4199,	11.	P14000P14199,
12.	q4200q4399,	12.	P14200P14399,
13.	q4400q4599,	13.	P14400P14599,
14.	q4600q4799,	14.	P14600P14799,
15.	q4800q4999,	15.	P14800P14999,
16.	q5000q5199,	16.	P15000P15199,
17.	q5200q5399,	17.	P15200P15399,
18.	q5400q5599,	18.	P15400P15599,
19.	q5600q5799,	19.	P15600P15799,
20.	q5800q5999,	20.	P15800P15999,
21.	q6000q6199,	21.	P16000P16199,
22.	q6200q6399,	22.	P16200P16399,
23.	q6400q6599,	23.	P16400P16599,
24.	q6600q6799,	24.	P16600P16799,
25.	q6800q6999,	25.	P16800P16999,
26.	q7000q7199,	26.	P17000P17199,
27.	q7200q7399,	27.	P17200P17399,
28.	q7400q7599,	28.	P17400P17599,
29.	q7600q7799,	29.	P17600P17799,
30.	q7800q7999,	30.	P17800P17999,
31.	q8000q8199,	31.	P18000P18199,
32.	q8200q8399	32.	P18200P18399

In the channel descriptor physical axes are attached to the channel axes (q110...q141, Byte 3).

P12000	Connected 0 or — 1 2 3	ed axis axis not connected axis connected axis may not be driven, otherwise message seems M2020 Axis controlled with measuring system and the reference point taken			
	-1 -2	axis simulation, Messystem not necessarily, Command value output according to actual axis rate, point of reference taken. Axis is simulated Measuring system is not necessary Set value output with accordingly act. axis speed Taken reference point without hardware detection			
P12001	Roundaxi 0 or — 1 2 3	s no round axis round axis round axis drives shortest path round axis drives pursuant to G6 negatively G7 shortest path			
P12002	Diametera 0 or — 1	axis no diameter axis diameter axis			
P12003	Axis modu 0 or — Byte 1 Byte 2 Byte 3	 address address recognition internally \$xx axis paragraph 1,,8 (axis on the axis module) \$xx slot paragraph 132 \$xx drive address with Sercos Axes 1255 \$00 drive address equal axis paragraph 			

P12004		axis speed s axes transfer at final drive is affected as: speed limiting value bipolar	[mm/min, degree/min]
P12005	Slopespee 0 or —	ed 1 Slope rate = 10 % max. axis speed to Slope to activate see P12136	[mm/min, degree/min]
P12006	Slopespee 0 or —	ed 2 Slope rate = 20 % max. axis rate to Slope to activate see P12136	[mm/min, degree/min]
P12008	Machined 0 or —	ynamics1 default=250msec	[ms]
	accelerate With Serco S-0-0138a	nics determine the time in that the axis of 0 on may s or one brakes. Always works with manual oper os axes the transfer to the final drive is affected as acceleration bipolar, eference driving acceleration.	ation and automatic (G0).
P12009	Machined 0or—	ynamics2 default=dynamics1 dynamics2>dynamics1, then always work dyn path driving (G1, G2, G3, G50) not with G0.	[ms] namics2with
P12010	Dynamicd 0or— 1	efinition linear axis acceleration drive. sine axis acceleration drive.	

[INC/mm, degree]

8.7 Axis parameters (continued)

Machine data for the 1st. axis

- P12012 Measuring system dissolution numerator Input only integral!
- P12013 Measuring system dissolution denominators The pulses of the measuring system are quadrupled in the AAZ. Example: measuring system with 2500 INC/r, pitch of the spindle of 10mm/r i.e. 1 revolution -> 2500 INC * 4 = 10000 INC / 10mm Input: P12012 1000; P12013 1 Input only integral!
- P12014 Measuring system counting reverse Byte 1 \$01 inverted Byte 2 \$xx number of invalid data bits on the right hand side Byte 3 \$xx number of invalid data bits on the left hand side (ref. 32 Bit) Example of an absolute encoder 32 1

xxxxxxx0000000000000000000000xxxx

xxxxxxx xxx 8-bits to the left fade out 4-Bit on the right fade out

Input P12014: \$080400

- P20015 Measuring system absolute encoder (AZA)
 - Byte 1\$xxnumber of data bits that have to be transmitted
00H=1.Bit...1FH=32.BitByte 2\$xxTransmitting frequency
00H=250khz,01H=330kHz,02H=500 kHz,03H=1mhzByte 3\$xxData mode
00H=binary code,01H=Gray codeByte 4:\$01Actual position is settinged in ESR on old value from P12152
i.e.. Axis reported (indicator REF1=1)

P12016	Exactstop 0 or —	ooundaryfine default=squ	ely uare root (1/measuring system resolution)	[mm, degree]
	Example:		scrutineer 1000 denominator 1	
	Default=so	qrt (1 / (1000 / 1	1))=0,0316mm	
P12017	Exactstop 0 or —	ooundaryrou default=8x	ghly exact stop boundary finely	[mm, degree]
	i.e.program -lagdistand in such a w -lagdistand	nmed positior ce (Sollpos be ay the drift col ce is small exa	xis starts a programmed position with exact stop, n is achieved: eing) is smaller than exact stop boundary gross, rrection is activated. act stop boundary finely, driving instruction (P12188) is reset.	
P12018	Downtimer 0 or—	nonitoring default=300	00 ms	[ms]
	If this monit	oringtime is e	exceeded, error message (M2022) is affected.	
P12020	KV factor 0 or —	default=16	x 1/s	[1/s]
		s Axes transf	on (p-proportion) the Lagereglung. er at final drive is affected as: V factor attitude control	
P12021	P-reinforce 0 or —	-	controlling device eed regulation in the drive	
			er at final drive is affected as: f speed controlling devices	
P12022	I-reinforcer 0 or —	nent (resettin default = 100	ne) 000ms (drift correction)	[ms]
			er at final drive is affected as: speed controlling devices	

P12024	Lagerrorlir 0 or —	nit default=50% over debit lag distance	[%	ό]	
	With the help of the axis speed and the KV's that can Lag distance to be calculated. Lag distance [mm]=feed [mm/min]/(60 x KV [1/s])				
P12025	Lagerrorlir 0or— -1	nit monitoring time default = 50ms error limit monitoring switched off	[ms]		
	If this lag is	exceeded, error message (M2001) is affected			
P12026	Around this With achiev	command value output monitoring to switch on P12026 must be > 0, and P12142 = 1. v_{ing} this lag is affected error message (M2002) output = 0 settinged.	[vo	olts]	
P12027	Maximum o 0 or —	command value output default=9,5V	[vo	olts]	
	Those max. output voltage is achieved, if these axis with max. axis speed drives.				
P12028	Command 1	value output direction reversal inverts			
P12029	Command 0 1,,32	value output axis exchange command value output to this axis command value output to indicated axis (caution: Duplicate of axes avoid)			

P12030	Software limits positive; no software end position check With Sercos axes transfer at final drive takes place as: S-0-0049 position limiting value positively	[mm, degree]
P12031	Software limits negative; no software end position check With Sercos Axes transfer at final drive takes place as: S-0-0050 position limiting value negatively	[mm,degree]
P12032	Emergency - position absolute absolute measure, refered to machine zero point approach emergency position see P12131	[mm,degree]
P12033	Emergency-position relative relative measure, refered to machine-location approach emergeny position see P12131	[mm,degree]
P12034	Basic position absolute absolute measure, in reference to machines - zero point approach to basic position see P12131	[mm, degree]
P12035	Basic position relative relative measure, refered to machine-location approach basic position see P12131	[mm, degree]
P12036	Fixed position absolute measure, refered to machine zero point approach fixed position see P12132	[mm, degree]
P12037	Pendlingposition relative measure, refered to machine-location approach pendling position see P12132	[mm, degree]
P12038	Dwell for pendling position 1 0 or cleared Pendling position 1 with exact stop approach pendling position see P12132	[s]
P12039	Dwell for pendling position 2 0 or cleared pendling position 2 with exact stop approach pendling position see P12132	[s]

P12040	Reference point offset[mm, degree]When taking the reference points (e.g. in the moment of T0), the actual position(P12151) is loaded with P12040. This means if this axis is approached, the axis is standing on it's reference point.							
P12041	Modulo 0 or P			60°				[degree]
P12042	•			ice (referen > error mes	ce switch - ze sage	eropulse)		[mm, degree]
P12043	Referer	nceo	distan	ce (distance	codedmea	suringsyste	m)	[mm, degree]
P12044	Referer	nceo	driving	logic				
	Byte 1 \$(01	Release of the reference accommodation in positive driving direction (see also P12130, byte 1)					
	Byte2 \$0	01		ise of the ref ilso P12130		ommodation	in negative driving	direction
			0 1 0	with switch with switch standard m	edge and nullimpu leasuring sys			
			1 0 1 0 1	switch nega references references	tively switch atively switch witch info. (F witch info. (F	ning P12180, byte P12180, byte	e 2) always actually e 2) becomes after es not update.	
	Conditions for the reference accommodation P12044 Reference driving logic specify P12079 Byte3 Sercos reference driving control paramet							cify
	Referen solong - P1213 is the di	ncea refei 30 rive1 edw	accom rence Byte3 tobed	modation a travel active \$ \$01 / riven as foll restarting	PLC:REPO	ementP1218 F1=1	30, reference positio	n release

8.7 Axis parameters (continued)

Machine data for the 1st. axis

- P12045 Sensorlogic
 - Byte 1

 $01: \mbox{Release}$ of measuring position accommodation in positive driving direction Byte 2

\$01: Release of measuring position accommodation in negative driving direction

Byte 4

Bit0	0	switch edge positively effectively
	1	switch edge negatively effectively
Bit4	0	standard pressure foot
	1	2. Sensor

Conditions for the measuring position accommodation

P12045		Pressure foot logic specify
P12079	Byte4	Sercos sensor expensive parameter specify
P12082		Sercos sensor of 1 measuring pos parameter specify
		(S-0-0130 (pos edge), S-0-0131 (neg edge)
P12084		Sercos sensor of 2 measuring pos parameters specify
		(S-0-0132 (pos edge), S-0-0133 (neg edge)
P8716, P87	717, P1213	1 start measuring accommodation with M26,
Measuring	accommod	lation acknowledgement P8696, P12181

Measuring position P12152

P12046 Error logic

Byte 1

\$01	Wire break T0, T1, T2, inverted signals missing	
φ0.	in obroait i of i if i Efficience a englished integrit	

- Byte 2
 - \$01 UAS signal responded (interference, contamination)
- Byte 3
 - \$01 Measuring system frequency too largely
- Byte 4
 - \$01 Sercos messages actively
 - \$02 Display drive status

P12047 Emergency stop logic

Bit 0-31 According to axis 1-32

A emergency stop position (P12032, P12033) is started, the axes indicated in P12046 are stopped.

8.7 Axis parameters (continued)

Machine data for the 1st. axis

Drift correction

- P12049 Drift correction (integral action time in P12022)
 - 0 drift correction only in standstill
 - 1 drift correction always active
 - 2 drift correction switched off

Machine data for the 1st. axis

P12050 Feedforward correction 0 or — Feed correction out [%]

Example: P12050:50% P12050:100%

the actual lag distance is bisected the actual lag distance close zero i.e.. Axis drives error limits freely

P12051 Feedforwarddelay

[ms]

8.7 Axis parameters (continued)

Machine data for the 1st. axis

lot correction

P12052	Backlash 0 or —	[mm, degree]	
		Input value is bisected for both driving directions Example: Input 0.042mm - Korretur +0,021 with positive drive - Korretur -0,021 with negative drive	
P12053	Backlash 0 or — > 0 < 0	correction time Backlash correction in P12052 works as static value Backlash correction in P12052 works as dynmischer value over the time after everyone, input in P12053 travel direction changes Backlash correction in P12052 works as dynmischer value over the time after everyone, input in P12053 start of a movement	[ms]

Correction dynamics

This dynamics cause that modifications of the axis correction (backlash -, measuring system -, upward gradient correction) with this admissible dynamics to be executed.

P12055	Correction dynamics			
	0 or —	default (machine dynamics 1/2)		

[ms]

Machine data for the 1st. axis

Measuring system correction with 2. Measuring system

P12056	Measuring system correction datum axis (2. Measuring system) Byte 1					
	\$xx	 32 physical axis paragraph 2. Measuring system Measuring system becomes by 1. Measuring system reports. Debit 2. Measuring system reference system its, so P12044 must: (byte 4, Bit4=1) to be settinged. Measuring system becomes by 2. Measuring system reports. 				
	Byte 2					
	•	 32 physical axis paragraph 2. Measuring system Measuring system as exchange axis, i.e Messsytemposition (all axis positions) Measuring system become on the 1. Measuring system rerouted and displayed. 				
	Byte 3					
	•	1 - 32 physical axis paragraph 2. Measuring system 2. Measuring system as scrutineer axis, i.e Messsytem scrutineer 2. Measuring system become on the 1. Measuring system rerouted.				
		Example of activation 2. Measuring system: q 118: \$00060000 (6th axis log on) P13001 if round axis				
		P13012, P13013, P13014 Messystem resolution				
			_			
P12057	Measuring 0or— >0	system correction reset time Correction off Correction on	[ms]			
P12058	Measuring 0 or —	system correction admissible correction Default 10mm	[mm]			

8.7 Axis parameters (continued)

Machine data for the 1st. axis

Measuring system correction with 2. Measuring system

P12059 Measuring system correction with internal correction table

- 0 or Function not actively
- >0 Measuring system correction with correction table Input of the distance of the corrections

[mm]

Note: This function should be only activated, if those resolution 2. Measuring system more roughly is than the resolution too correcting axis. (axis for swinging would be lively)

In order to structure the correction table, must after the activation the axis uniquely from the negative software end position to the positive software end position to be moved.

8.7 Axis parameters (continued)

Drive data for digital drives 1st. axis

Pitch correction

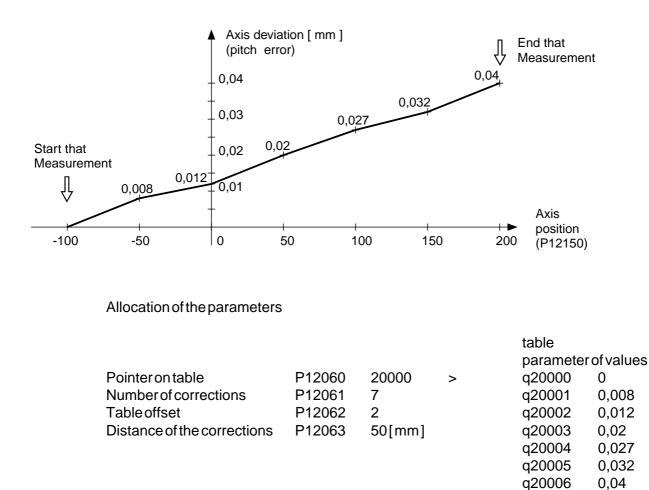
- P12060 Pitch correction pointer on table Parameter (q-NR.) where table starts.
- P12061 Pitch correction number of corrections 0 or — Correction out >0 Correction
- P12062 Pitch correction table offset Table access is permitted only with values of item between the end positions. Thus the table offset must become so in against that this applies. Offset = - (machine position (ßt measured value)/distance of the corrections) Example: P12062: -6 = (P12150: 120,000)/P12063: 20,000)

P12063 Pitch correction distance of the corrections [mm]

- P12064 Pitch correction datum axis (interaxis correction, cross correction) Input physical axis paragraph
 - 0 or Correction algorithm uses the axis position (q2x50) the personal axis, over in the correction table the suitable to obtain steigungsfehler.
 - 1...32 Physical axis paragraph correction algorithm uses the axis position (q2x50) the datum axis, over in the correction table the suitable to obtain steigungsfehler.

Notes to the upward gradient correction:

To obtain if the machine position of the axis becomes larger than in the correction table covered correction area, the correction algorithm 'interconnects 'start and end the correction table around the entspechenden correction value, i.e.. Correction values repeat themselves.


Recurring corrections can so in a compact correction table to be stored. Start and end of the correction table should contain thereby the same values, since it can lead otherwise within this area to striking the axis.

8.7 Axis parameters (continued)

Drive data for digital drives 1st. axis

Example of pitch correction

Drive data for Sercos

- P12070 Sercos parameter ("S", "p")
- P12071 Sercos parameter (record)
- P12072 Sercos parameter (paragraph)
- P12073 Sercos parameter (attribute)
- P12074 Sercos parameter (value)
- P12075 Sercos parameter (minimum)*
- P12076 Sercos parameter (maximum) *
- * In the menu: parameter/axis-parameters/drive-parameter contents of all Sercos (s) - product (p) - know parameters over input - boxes, output - boxes to be displayed and changed.

*

Drive data for Sercos

- P12078 Sercos drive operating modes (selection over P12144, byte 4)
 - Byte 1 S-0-0032 main operating mode
 - \$02 Speed control
 - \$03 Position adjustment error limit-afflicted with generator 1 (Motor)
 - \$04 Position adjustment error limit-afflicted with generator 2(Ext.)
 - \$0b Position adjustment error limit-free with generator 1 (Motor)
 - \$0c Position adjustment error limit-free with generator 2(Ext.)

Byte 2 S-0-0033 type of subsidiary establishment 1

- \$02 Speed control
- \$03 Position adjustment error limit-afflicted with generator 1 (Motor)
- \$04 Position adjustment error limit-afflicted with generator 2(Ext.)
- \$0b Position adjustment error limit-free with generator 1 (Motor)
- \$0c Position adjustment error limit-free with generator 2(Ext.)
- Byte 3 S-0-0034 type of subsidiary establishment 2 \$xx: (planned)
- Byte 4 S-0-0035 type of subsidiary establishment 3 \$xx: (planned)

8.7 Axis parameters (continued)

Drive data for Sercos

P12079	Sercos driv Byte 1	Sercos drive definitions Byte 1			
	•	0	Position data in absolute absolute		
		1	Position data in modulo format		
	Bit1	0	Speed data in m/min		
		1	Speed data in U/mim		
	Byte 2				
	\$xx		External measuring system (paragraph of the axis)		
	Byte 3		Sercos S-0-147 reference driving control parameter		
	Bit0	0	Clockwise rotation of the motor shaft		
	2.10	1	Anti-clockwise turn of the motor shaft		
	Bit3	0	Reference take with motor generator		
		1	Reference take with external generator		
	Bit5	0	Reference switch is analysed		
		1	Reference switch is not analysed		
	Bit6	0	Reference label is analysed		
		1	Reference label is not analysed		
	Bit7	0	Any position after reference take		
		1	Point of reference after reference take		
	Byte 4		Sercos S-0-169 sensor control parameter		
	Bit0	0	Positive edge sensor 1 is not analysed		
		1	Positive edge sensor 1 is analysed		
	Bit1	0	Negative edge sensor 1 is not analysed		
		1	Negativeedge sensor1isanalysed		
	Bit2	0	Positive edge sensor 2 is not analysed		
		1	Positive edge sensor 2 is analysed		
	Bit3	0	Negative edge sensor 2 is not analysed		
	5.4	1	Negative edge sensor 2 is analysed		
	Bit4	0	Position actual value to operating mode (S-0-0051/S-0-0053) referred		
	D::/	1	Position actual value always to S-0-0051 referred		
	Bit5	0	Release individual measuring for sensor 1		
	Bit6	1 0	Release subsequent measurement for sensor 1 Release individual measuring for sensor 2		
	DILO	1	Release individual measuring for sensor 2 Release subsequent measurement for sensor 2		
		I	Release subsequent measurement for sensor 2		

Drive data for Sercos

- P12080 Sercos phase switching (acknowledgement in P12081)
 - 0 Switching on phase
 - 2 Parameter mode
 - 4 Operating mode

P12081	Sercos sy \$E001 \$E002 \$E003 \$E004 \$E005	vstem status (acknowledgement of P12080) (PLC:SZSA_01) Sercos phase 0 Sercos phase 1 Sercos phase 2 Sercos phase 3 Sercos phase 4 Sercos drives are ready for use, other values show entsprechene intermediates phase on

- P12082 Sercos cyclic actual value 3 request Paragraph by the Sercos parameter z.B.:130 (S-0-0130 measured value 1-postiv)
- P12083 Sercos cyclic actual value 3 acknowledgement Worth from Sercos parameter e.g.: Worth to the s-paragraph (S-0-0130 measured value 1-positiv),
 - which over P12082 was called)
- P12084 Sercos cyclic actual value 4 request Paragraph by the Sercos parameter z.B.:84 (S-0-0084 torque actual value)
- P12085 Sercos cyclic actual value 4 acknowledgement Worth from Sercos parameter e.g.: Worth to the s-paragraph (S-0-0084 torque actual value) which over P12084 was called)

P12089 Sercos speed standardisation

- 0 or Standart Sercos priority
- >0 Relation between motor priority and load priority

Area monitoring axes

Area1

P12100	Channelparagraph
1 12100	onumorpurugrupn

Byte 1:

- 0 or P12101 and P12102 = q-parameter
- 1-8 P12101 and P12102 = p-parameter

Byte 2:

\$xx Number of the reference axis for which the monitoring area is to apply

Byte 3:

- \$01 CNC monitored over the area
 - (Stops with error message: reached full scale position)
- \$10 Value in P12103 affects in the + and -> marker field K1B1E1
- \$20 Value in P12104 affects in the + and -> marker field K1B1E1

Byte 4:

- 0 Control position of P12102 Content: Pointer to parameter
- \$01 Control position is a value

P12101 Reference position

Contents: Pointer on parameters

- 0 or Reference position = internal machine position (q2150)
- -2150 Reference position = internal machine position (q2150)
- -2152 Reference position = internal machine position (q2152) With the reference position (internal) are these positions immediately for the order, over parameters only time-delayed.

P12102 Control position

Contents: Pointer on parameters

0 or — Monitoring logic not actively Note:

Monitoring logic is AFTER the reference point taken active!

P12103	Area 1 relative related to P12101 Acknowledgement achieves	P12188byte2=1
P12104	Area 2 relative related to P12101 Acknowledgement achieves	P12188byte3=1

Area monitoring axes

Area 2

P12105	Channelparagraph
	enamerparagraph

Byte 1

- 0 or P12106 and P12107 = q-parameter
- 1-8 P12106 and P12107 = p-parameter

Byte 2:

\$xx: Number of the reference axis for which the area of monitoring is to apply

Byte 3:

- \$01: CNC monitored over the area
 - (Stops with error message: reached full scale position)
- \$10: Value in P12108 affects in the + and -> marker field K1B1E11
- \$20: Value in P12109 affects in the + and -> marker field K1B1E1

Byte 4:

- 0 Control position of P12107 Content: Pointer to parameter
- \$01 Control position is a value

P12106 Reference position

Contents: Pointer on parameters

- 0 or Reference position = internal machine position (q2150)
- -2150 Reference position = internal machine position (q2150)
- -2152 Reference position = internal machine position (q2152) With the reference position (internal) are these positions immediately for the order, over parameters only time-delayed.

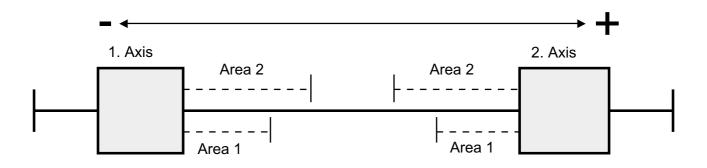
P12107 Control position

Contents: Pointer on parameters

0 or — Monitoring logic not actively Note:

Monitoring logic is AFTER the reference point taken active!

P12108	Area 1 relative related to P12106 Acknowledgement achieves	P12189byte2=1
P12109	Area2relativerelated to P12106 Acknowledgement achieves	P12189byte3=1



Area monitoring axes

Area2relative related to P12106 Acknowledgement achieves P12189 byte 3=1

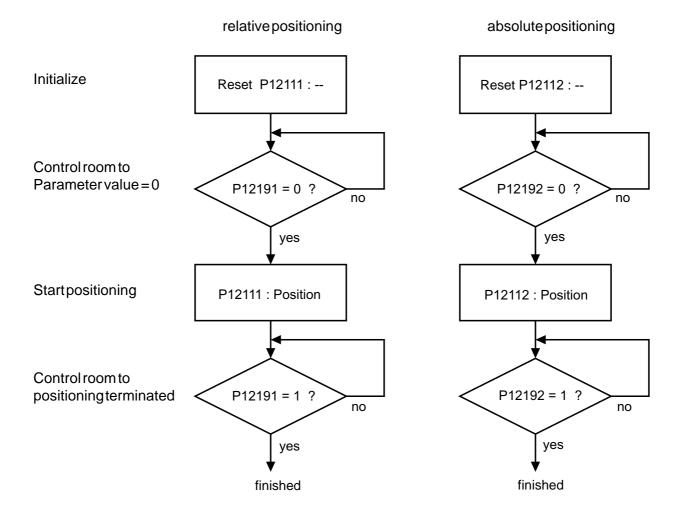
Example: Area monitoring 1. and 2. Axis

P12100	0	P12300	0
P12101	0	P12301	0
P12102	2350	P12302	2150
P12103	10	P12303	-10
P12104	20	P12304	-20

If axis 1 drives 2 from axis 2 into area, indicator K1BE1 is settinged If axis drives 1 into area 1 from axis 2, indicator K1B1E1 is settinged If machine pos. Axis 1 = machine pos. Axis 2 is settinged indicator K1B1

If axis drives 2 into area 2 from axis 1, indicator K1BE2 is settinged If axis 2 drives 1 from axis 1 into area, indicator K1B1E2 is settinged If machine pos. Axis 2 = machine pos. Axis 1 is settinged indicator K1B2

Axis commands / functions


P12110	Axis position setting Display or debit position is sett If parameter is reset, then old v		[mm, degree]
P12111	Relative relative start Axis starts when describing. Feed in Override in Acknowledgement achieves If P12111 reset An active relative positioning is	P12191=0	[mm, degree]
P12112	Absolute absolute start Axis starts when describing. Feed in Override in Acknowledgement achieves If P12112 reset An active absolute positioning	P12192=0	[mm, degree]
P12113	Absolute before position 0 or — Before position ch This before position can, with p in the NC program and active e premature step up of the active With achieving these before po- this is settinged in the paramet i.e. it is active only for a monitor Example: N100 G28 F100 X:100 N110 P12113:20 X200 N120 Y100 i.e. with drive into block N110 a Final position X200 <= P1211	[mm, degree]	

8.7 Axis parameters (continued)

Axis commands / functions

Example of a relative/an absolute absolute

Axis commands / functions

- P12114 Output skip Axis is moving with the input (speed) without dynamic (skip function) in the selected direction. Axis position is updated.
- P12115 Output via output cards (AK, AEK) 0 or — Not actively
 - -1 i.e. the four signals become into those PLC Interface (see P12195) written.

Byte 1

- \$xx 1-32 AK clip No. for this axis Axis drives over outputs of a AK, AEK per axis of 4 binary signals: example: Kl. 1 - drive positively
 - KI. 2-drive negatively
 - Kl. 3-drive with max axis speed
 - KI. 4 drive with Slope speed
 - (settinged if indicator SLOP11 = 1)

Byte 2

\$xx: 1-32 slot No. of the AK-, AEK card

8.7 Axis parameters (continued)

Axis commands / functions

P12119	Handwheelspee 0or—	d max. Axis speed	[mm/min, degree/min]
P12120	Interpolation spe 0 or —	ed max. Axis speed	[mm/min, degree/min]
P12121	Relative velocity 0 or —	max. Axis speed	[mm/min, degree/min]
P12122	Absolute speed 0 or —	max. Axis speed	[mm/min, degree/min]
P12123	Fixedpositionsp 0 or—	eed max. Axis speed	[mm/min, degree/min]
P12124	Spindlespeed 0 or—	max. Axis speed	[degree/min]

Axis commands / functions

P12125	Overridewi 0 or —	th interpolation spo Default Otherwise Overrio	see P8865
P12126	Override wi 0 or —	th relative speed d Default Otherwise Overrie	see P8866
P12127	0 or —	th Absolu t speed Default Override paragrap	see P8867

- P12128 Override with fixed position speed drive Default = 1 contents Override paragraph 1-8
- P12129 Override at spindle speed drive Default=2 contents Override paragraph 1-8

Parameter block of PLC (Marker interface)

P12130 Approach reference position

Byte 1

- \$00 Stop of the positive reference drive (PLC: REPO+1)
- \$01 Start of the reference drive in positive direction.
 feed: Hand feed P8755
 back message achieves P12180

Byte 2

- \$00 Stop of the negative reference drive (PLC: REPO-1)
- \$01 Start of the reference drive in negative direction.
 feed: Hand feed P8755
 back message achieves P12180

Byte 3

\$01 Reference position release (PLC: REPOF1) back message achieves P12180 (see also P12044) note: If with one already referenzierten axis the reference position release is again settinged, the reference point reset. the axis can again be referenziert.

Byte 4

\$01 Reference position setting (PLC: REPOS1) back message achieves P12180

8.7 Axis parameters (continued)

Parameter block of PLC (Marker interface)

P12131 Approach measuring position

Byte 1 \$00 \$01	Stop of the positive measuring travel Start of the measuring drive in positive direction. feed: Hand feed P8755 back message started P12181	(PLC: MEPO+1)
Byte2 \$00 \$01	Stop of the negative measuring drive Start of the measuring drive in negative direction. feed: Handfeed P8755 back message started P12181	(PLC: MEPO-1)
Byte3 \$01	Measuring position release back message settinged P12181	(PLC: MEPOF1)
Byte4 \$01	Measuring position setting back message settinged P12181	(PLC: MEPOS1)

8.7 Axis parameters (continued)

Direction PLC --> interpolator

P12132 Approach emergency position, basic position

Byte1 0 1	Stop for emergency position absolutely achieve Start for emergency position absolutely achieve Position in P12032 Feed: max. axes speed Override 100% All other axes in the channel go on axis stop. Back message achieves in P12182 When starting to that emergency position drive bed message M2000 settinged.	(PLC: NOPOA1)
Byte2 0 1	Stop for emergency position relatively achieve Start for emergency position relatively achieve Position in P12033 Feed: max. axes speed Override 100% All other axes in the channel go on axis stop. Back message achieves in P12182 When starting to that emergency position drive bed message M2000 settinged.	(PLC: NOPOR1)
Byte3 0 1	Stop for reason of position absolutely achieve Start for reason of position absolutely achieve Position in P12034 Feed: max. axes speed Back message achieves in P12182 Override P12128	(PLC: GRPOA1)
Byte4 0 1	Stop for reason of position relatively achieve Start for reason of position relatively achieve Position in P12035 Feed: max. axes speed Back message achieves in P12182 Override P12128	(PLC: GRPOR1)

8.7 Axis parameters (continued)

P12133	Approach	fixed position, pendling position	
	Byte1 0	Stop for approaching fixed position	(PLC: FEPO1)
	1	Start for approaching fixed position Position in P12036 Feed in P12123 Feedback reached in P12183 Override P12128	
	Byte2 0 1	Stop for approaching pendling position Start for approaching pendling position Position in P12037 Feed in P12123 Feedback reached in P12183 Override P12128	(PLC:PEPO1)
P12134	Drivespin	dle	
	Byte1 0 1	Stop for driving spindle positive Start for driving spindle positive Speed in P12124 Override P12129 Feedback reached in P12184	(PLC:SPE+1)
	Byte2 0 1	Stop for driving spindle negative Start for driving spindle negative Speed in P12124 Override P12129 Feedback reached in P12184	(PLC:SPE-1)

8.7 Axis parameters (continued)

P12135	Endpositionreached				
	Byte11	Positive hardware end position reached	(PLC:EL+1)		
	Byte 2 1	Negative hardware end position reached	(PLC:EL-1)		
P12136	Slope				
	Byte11	Activate slope 1 actual axis speed <= slope speed 1 slope speed in P12005	(PLC:SLOP11)		
	Byte 2 1	Activate slope 2 actual axis speed <= slope speed 2 slope speed in P12006	(PLC:SLOP21)		
P12137	Drivelocki	ng/drive stop			
	Byte11	Drive locking for positive direction	(PLC:FASP+1)		
	Byte 2 1	Drive locking for negative direction	(PLC:FASP-1)		
	Byte 3 0 1	Axis stops with dynamics function (axis stop) Axis stops without dynamics function (axis locking) Dynamics in P12008, P12009	(PLC:FASOD1)		

8.7 Axis parameters (continued)

P12138	Axissimula	ation	
	Byte1 1	Simulation without output voltage i.e. the axis moves controlled (P12139) and the reference signal is simulated internally.	(PLC:SIMMA1)
P12139	Axiscontro	lled	
	Byte1 1 as ac	Controlled with measuring system i.e. the real axis position is carried internally. If controlled is cleared (positioning control on), this axis positi stual position	(PLC:GSMM1) ion is taken
	Byte2 1	Controlled without measuring system	(PLC:GSOM1)
P12140	Axisupdate	ed(target=actual)	
	Byte11	Updating with reapproaching the old position	(PLC:NGMW1)
	Byte 2 1	Updating without reapproaching	(PLC:NGOW1)
	Byte3 1	Tracking Feedback with motion command	(PLC:NGFB1)
P12141	Axisclamp	ed	
	Byte1 1	Clamping is switched on i.e. no drive locking for axis; drift correction is switched off Axes output = 0 volts	(PLC:GEKL1)
	Byte2 1	How byte 1,1 additionally been frozen display	(PLC:GKAE1)

P12142	Admissible output monitoring				
	0 or —	Monitoringswitchedoff			
		Around this monitoring to switch on must:			
		P12026 > 0, and $P12142 = 1$ its.			
		With achieving this boundary is affected error n	nessage (M2002)		
		and analog output = 0 is settinged.	C ()		
P12143	Relative po	ositions separately announce			
	Byte11	Relatively movements (P12111) are summed	up in P12158.		
	5	Display position is preserved.	•		
		P12158 is reset when switching on on.			
	Byte 21	Handwheel movements are summed up in P12	2158		
	,				
P12144	Sercos driv	ve control word (PLC -> Interpolator -> Sercos D	rive)		
	Byte 1		- ,		
	\$00	driveoff	(PLC:ATEIN1)		
	\$01	drive on	(,		
	Byte 2				
	\$00	norelease	(PLC:ATFRG1)		
	\$01	drive release	()		
	Byte3				
	\$00	drive stop	(PLC:ATSTR1)		
	\$01	drivestart	(. 20		
	Byte4				
	\$00	selection head operating mode	(PLC:ATBTR1)		
	Q UU	(byte specifies 1) in P12078,	(. 20		
		e.g.: Position of control with generator 1 drage	rrors freely		
	\$01	selection apart from operating mode 1	noionoony		
	φστ	(byte specifies 2) in P12078,			
		e.g.: Speed control			

Axis feedbacks / informations

P12150	Machine position actual mechanical position of the axis	[mm, degree]
P12151	Target position position of the axis referred to the machine reference point G53	[mm,degree]
P12152	Actual position actual measuring position of the axes	[mm, degree]
P12153	Measuring position (display) stored display position at measuring signal (P8855) (Channel mapping)*	[mm, degree]
P12154	Display-position Display = target position - display shift (Channel mapping)*	[mm, degree]
P12155	Programmed position position programmed in the NC block (Channel mapping)*	[mm, degree]
P12156	Deltaposition Delta=programmedposition - displayposition (Channelmapping)*	[mm, degree]
P12157	Display-shift Sum of all shifts (e.g. zero point, G92 shift, tool length) (Channel mapping)*	[mm, degree]
	* Channel mapping parameters are channel specific, i.e it does not exist a channel-spreading q-parameter. During the switching on routine becomes however the parameter site into the parameter status of the p-parameter copies; i.e. is in a para channel mapping the parameter status to be redefined, then this m suitable status of the q-parameter are affected. Example: P12153 is to be provided with 4 post-decimal positions —> setting parameter status of q2153 with \$24xxxxxx After restarting parameter status in P12153 corresponds the parameter status q2153	ameter with Just in

8.7 Axis parameters (continued)

Axis feedbacks / information

P12158	Position shift (e.g. handwheel-shift in Automatic)	[mm, degree]
P12159	Distance reference switch -> reference mark	[mm, degree]
P12160	Actuallagdistance	[mm, degree]
P12161	Actual coupling correction	[mm, degree]
P12162	Actual drift correction	[mm, degree]
P12163	Actual backlash correction	[mm, degree]
P12164	Actual measuring system correction	[mm, degree]
P12165	Actual pitch correction	[mm, degree]

Axis feedbacks / information

P12167	Command speed (regulator) Access with oscilloscope functions	[mm, degree]
P12168	Actual speed (measuring system) Access with oscilloscope functions	[mm, degree]
P12169	Actual output voltage of the position adjustment	[V]

P12170	Actualaxisspeed	[mm/min, degree/min]
P12171	Actual relative speed	[mm/min,degree/min]
P12172	Actual absolute speed	[mm/min, degree/min]
P12173	Actual fixed position speed	[mm/min,degree/min]
P12174	Actual spindle speed	[degree/min]

Axis feedbacks / information

P12176 ADW module Address Byte 1 \$xx ADW input Paragraph 1...4 (selection of the A/D transducer on the ADW Module)

Byte 2

\$xx slotparagraph 1...32

- P12177 ADW Input value the A/D of transducer addressed in P12176 Contents: [32767...-32768]
- P12178 DAW module address Byte 1 \$xx DAW output Paragraph 1... 4 (selection of the D/A transducer on the DAW module) Byte 2 \$xx slot paragraph 1... 32
- P12179 DAW output value the D/A of transducer addressed in P12178 Note: If P12178 does not specify, the DAW value becomes up the axis module of this axis output.

[V]

8.7 Axis parameters (continued)

Parameter block to the PLC (marker interface)

P12180	Reference position			
	Byte11	Referencepointtaken	(PLC:REF1)	
	Byte21	Switch, active edge going	(PLC:REFS1)	
P12181	Measuring	position		
	Byte 1 1	measuringpositiontaken	(PLC:MEGT1)	
	Byte21	switch, active edge going	(PLC:MES1)	
P12182	•	cyposition, basic position reached		
	Byte11	emergency position reached	(PLC:NOPOE1)	
	Byte 3 1	Basic position reached	(PLC:GRPOE1)	
P12183	•	tion, pendling position reached		
	Byte11	fixed position reached	(PLC:FEPOE1)	
	Byte 2 1	pendling position reached	(PLC:PEPOE1)	
P12184	Speed rea Byte 1 1	ched speed reached	(PLC:DREZE1)	
P12185	Softwarac	endposition		
1 12105	Byte 1 1	positive software endposition	(PLC:SWEL+1)	
	Byte 2 1	negative software end position	(PLC: SWEL-1)	

8.7 Axis parameters (continued)

Parameter block to the PLC

P12186	Axis drives Byte 1		(PLC: ACHFA1)
	0	Noaxisspecification	· · · · · · · · · · · · · · · · · · ·
	1	i.e.: Axis does not drive or axis builds the even lag distance or Axis does not drive —> axis specification/axis feed to zero i.e.: Axis specifications are available.	ff
D 40407	D · · · · ·		
P12187	Drivinginst		
	0	No driving instruction pends i.e no verfahrweg for axis	
		- axis finds within exact stop	
		finely (P12016)	
	Byte 1		(PLC: FB+1)
	1	Driving instruction for positive driving direction	(1 2011 211)
		(driving instruction remains pending, if e.g. in the drive path the feed to zero becomes)	
	Byte 2		(PLC: FB-1)
	1	Driving instruction for negative driving direction (driving instruction remains pending, if e.g. in the drive path	(• · · _ · ·)
		the feed to zero becomes)	
	Byte 3		
	1	Axis drive actual actively	
		i.e. the even position actual which can be started yet does no	tachieve.
P12188	Backmess	age area monitoring axes area 1	
	Byte 1 1	Reference position (P12101) = control position (P12102)	(PLC: K1E1)
	Byte 2 1		: K1B1E1)
	Byte 3 1	Control position area 2 (P12104) achieves (PLC	: K1BÈ1)
	Note:		
	Signalsare	set AFTER the reference point taken!	
P12189	Backmess	age area monitoring axes area 2	
	Byte 1 1	Reference position (P12106) = control position (P12107)	(PLC: KÈ1)
	Byte 2 1 Byte 3 1		:: K2B1E1) :: K2BÈ1)
	Note:		
	Signalsare	setAFTER the reference point taken!	

8.7 Axis parameters (continued)

Parameter block to the PLC

P12191	Relative p Byte 1 1	i.e.: Axisa	eves osition achieves actual around the error limit arget position removes.	(PLC: REPOE1)
P12192	Absolutep Byte11	i.e.: Axisa	eves position achieves actual around the error limit arget position removes.	(PLC: ABPOE1)
P12194	Sercos dri Byte 2 1	ve status (S \$0000 \$0001 \$0100 \$0101	ercos drive -> Interpolator -> PLC) Drive not yet ready for the performance power, there drive check not finally. Drive ready for the performance power, Drive actual ready for use and performance supply switched on, note: due to this back message are those to operate drive releases (P12144) Drive actual ready for use, drive releases (P12144) are effective, drive output stage actual actively.	
P12195	AK/AEK- Definition Byte 1			
	,	\$01	drive in positive direction	(PLC:POSFA1)

Duto 2	\$01	driveinpositivedirection	(PLC:POSFA1)
Byte2 Byte3	\$01	drive in negative direction	(PLC:NEGFA1)
	\$01	drive with max. Axis speed	(PLC:SCHFA1)
Byte 4	\$01	drive with Slope speed	(PLC:LGSFA1)

Parameter block to the PLC

- P12197 Message number Message display for this axis e.g. M2110 approach reference position
- P12198 Channel number Axis belongs to this channel (1...8)

(PLC:KANNR1)

(PLC:MELNR1)

P12199 Logicals axis number (PLC: LANA1) Axis has this logical number (1...32) in the channel

9. Messages

9.1	Groups of messages	9 - 2
9.2	General CNC messages	9 - 3
9.3	Messages at input/output	9 - 4
9.4	Messages with the tools radius correction	9 - 6
9.5	Messages of the NC interpreter	9 - 7
9.6	Messages of the system	9 -13
9.7	Messages of the interpolator	9 -17
9.8	Messages of the PLC	9 -19
9.9	Messages of the operating panel	9 -20
9.10	Cycle messages	9 -23

The following abbreviations are used for the effect of the messages:

- SA system abort (all channels)
- KA channel abort
- KS channel stop
- A display

9.1 Groups of messages

M1000 M1999	Messages of the CNC, block interpreter, I/O
M1150 M1199	Error off tool radius correction
M1950 M1999	SYSTEM error with the call by DLL Functions
M2000 M2999	Messages of the interpolator
M3000 M3999	Messages of the PLC
M3000 M3499	Global messages of the plant (i.e. channel overlapping)
M3000 M3249	Messages are indicated with gray writing on red ground
M3250 M3499	Messages are indicated with black writing on turquois ground
M3500 M3999	Channel specific messages
M3500 M3749	Messages are indicated with gray writing on red ground
M3750 M3999	Messages are indicated with black writing on turquois ground
M4000 M4999	Messages of the operating panel
M4000 M4499	BWO messages
M4000 M4299	DOS messages
M4300 M4399	Messages of the system
M4400 M4499	Messages of the MMI
M4500 M4999	free for the user
M5000 M7999	Reserved
M8000 M8999	Messages of cycles
M8000 M8499	Standard cycles
M8500 M8999	Free for users
M9000 M9999	Error message off CNC DLL
M9000 M9099	Reserves for BWO
M9100 M9999	Freely for users

9.2 General CNC messages

Message	Effect	Meaning
1000	KS	Error when writing in Flash-memory P8505 Error code Info 1 P8506 Channel number Info2
1001	KS / KA	FLASH Function not executed
1002	KS	No NC program in the Flash-memory
1008	KA	Approach reference points
1009	A	Switching AUTO <> POS not allowed Switching has to be done in MANUAL!
1050	KA	Tool group not found in the tool data memory
1053	KA	Service life of the group of tools run
1098	A	Error message when renumbering a NC program -> skip target is not available. The renumbering is not executed. Number of the NC block which has caused this message is written in P8505.
1099	A	Error message when renumbering a NC program -> indirect skip in NC memory available. Renumbering is not stopped, but this NC block is marked with the text 'warning'.

CNC 900 MESSAGES

9.3 Messages at input/output

Message	Effect	Meaning
1100	A	Error in the test character or in the character number with the datentransfer between operating panel and CNC, i.e. the operating panel obtain on divergent Test character / file size as the CNC.
1102	A	No abort confirmation from the operating panel Each I/O-abort-confirmation-telegram (CNC —> OP) has to be confirmed by the operating panel. If this is not the case, the message 1102 is.
1105	A	Error when opening a program in the NC memory
1106	А	NC program becomes overwritten
1107	А	NC program is already existing and will not be overwritten
1110	A	Wrong file identification i.e.: the identification at the file start is not correct 'P' for NC programs 'D' for parameters 'B' for zero points Line number in P8505
1111	A	Line read can not be interpreted Line number in P8505
		Reasons e.g.: - NC block does not start with block number - parameter line is damaged - preceeding file has no end identification (#) - I/O parameter is not correct (Baudrate, parity)
1112	A	Invalid channel Reason: Read or write operations with channel parameters of which the channel does not exist.

CNC 900 MESSAGES

9.3 Messages at input/output (continued)

Message	Effect	Meaning
1113	A	Reception string overflow with I/O traffic (input) (max. character length of a line: 400) Read in string actual longer than reception s string. A cause: - It tried on false file format to read in (EXE, being file) - Errors in the input file
1114	А	Reception string does not contain a test character
1115	А	Reception string contains false test character
1120	KS	Memory space problem with the system down load (too little temporary memory (HEAP) available)
1121	KS	Download software does not fit the hardware version of the CNC Card, e.g to charge it tried on BS902.xxx into a CNC Hardware 084564.
1122	KS	Check total the loaded system software actual not correctly. - > file possibly damages - > problems while the loading.
1123	KS	Check total the system software actual burned in the FLASH not correctly. - > file possibly damages - > hardware problem

9.4 Messages with the tools radius correction

Message	Effect	Meaning
1151	KA	Tool radius too largely
1152	KA	Circle radius too small (message with stop)
1153	KA	Tool radius correction error with ON/OFF drive
1154	KA	G0 / G1 with tool radius correction not possibly
1155	KA	G2 / G3 with tool radius correction not possibly
1156	KA	With tool radius correction no intersection of the sets
1157	KA	Too many blocks without path
1158	KA	G12 not possible
1159	KA	No path difference

9.5 Messages of the NC interpreter

Message	Effect	Meaning
1200		Coprocessor is missing
1201	KA	Channel descriptor not valid
1202	KA	Parameter number too large
1203	KA	Division through zero
1207	KA	Too many axes programs. Message only in the export version A cause: It is tried, in a block more axes to interpolate as certified. Error correction: Program fewer axes in the incorrect block.
1208	KA	Too many parameters programmed in the block (max. 32)
1209	KA	Too many bracket levels (maximum 10)
1210	KA	Bracket is missing
1211	KA	Syntax error - in the automatic mode incorrect program/record number becomes in P8910 / P8911 displayed. - with the Renumbern record number in the P8505 (Info1) is displayed.
1212	KA	Negative root
1213	KA	Function can not be executed e.g. at - logarithm-calculation - tan (90)
1214	KA	No parameter operation
1215	KA	Syntax error
1216	KA	Unknown axis name
1217	KA	Error at M25 The NC program contains on loop end (M25) without loop start (M24).
1218	KA	Error at M24

Message	Effect	Meaning
1219	KA	Errors at sub-routine call up
1220	KA	Too many sub-routine call up
1221	KA	Parameters not loaded
1222	KA	Too many M - or G - or P - functions in a block programs
1223	KA	Error in the outline path In the case of NC program abort: A possible cause tool radius actual too largely, in order to process outline. Error correction Tool with smaller tool tools use.
		With NC program stop: Programmed outline radius actual smaller than the half chord. Radius is corrected. NC program can be started again.
1224	KA	Spindle not available
1225	KA	No tool group defined
1226	KA	Geometry error possible reason: - at G12, G123 next block with travel is missing - function G123 is programmed with M01
1227	KA	M - function number too large
1228	KA	 M - function definition not correct a M-function with skip target is in the NC program. M-Function is not defined as skip-M-function. a M-function without skip target is in the NC program. M-Function is defined as skip-M-function.
1229	KA	M1 is not allowed in this block e.g. it may not be synchronized if tool radius correction is switched on.
1230	KA	No feed was programmed for G01/02/03
1231	KA	G02/G03 without path difference

Message	Effect	Meaning
1232	KA	Not allowed combination of G or M function programmed in the NC block.
1233	KA	Circular interpolation (G02/G03) programmed without R or I / J / K
1234	KA	Programmed outline radius actual smaller than the half chord, i.e. with this programmed radius can the programmed terminator point not to be achieved. NC program is stopped. Radius is corrected. NC program can be started again.
1235	KA	Spline not possible
1237	KA	Circle dynamics, Error when calculating feed Reason: Acceptable path deviation (P8852) is larger than the programmed radius. Erasing the error: Reduce path deviation (P8852)
1238	KA	Programmed centre point is not correct with programmed start and terminator point (see also P8843)
1240	KA	No valid operation range defined (P8555) Message appears e.g. at zero point call up
1248		Command / instruction not certified usually on instruction off a DLL Cycle, does not permit in such a way.
1249	KA	Invalid NC interpreter default Error correction: The following parameters check: Parameter P8830 Preset zero point Parameter P8853 Preset type of coordinate
1252	KA / A	Program not found
1255	KA / A	Block not found
1256	А	NC memory full

Message	Effect	Meaning
1257	KA	Memory error in drip-feed-buffer Over - or underflow
1258	KA	Memory error in drip-feed-buffer Faulty block synchronization when reading the buffer
1259	KA / A	NC block with defective check sum
1260	KA / A	Error when reading NC memory
1261	А	Error when writing in NC memory
1262	KA / A	File not defined
1263	KA / A	Program not found
1264	KA / A	Program not opened for reading
1265	A	Program write-locked Interlocking through key-operated switch etc
1266	KA / A	NC program is locked Program is already opened for writing by an other user.
1267	KA / A	Too many programs opened
1268	KA / A	Circle buffer - overflow e.g. Drip-feed-buffer overflow
1269	KA / A	Applied function is not supported at ring - buffer (Drip-feed-operation)
1270	KA / A	Format error (The opened file is not a NC program)
1271	KA / A	Faulty NC block e.g. 'N' is missing before the block number
1272	KA / A	Error at access on the NC memory
1275	А	NC saving write protected
1280	KA / A	Directory chain of NC memory defective

Message	Effect	Meaning		
1281	KA / A	File chain of NC program defective		
1283	KA / A	System data for NC memory organization defective		
1285	KA / A	Blocks in the NC memory are double-chained		
1290		are not sorted with the small number and ending with the big one) lines-number of the I/O files Info 1 new block number Info 2		

Message	Effect	Meaning
1300	KA / A	Parameter not installed - cleared Parameter number in P8505 Info 1 Channel in P8506 Info 2
1301	KA / A	Parameter-check sum defective Difference to M1811: parameter is actually read
1302	KA / A	Parameter number larger than maximum parameter number
1304	KA / A	Parameter is write-locked Parameter number in P8505 Info 1 Channel in P8506 Info 2
1305	KA / A	Channel parameter not available. It was tried, to write a channel parameter, whose channel does not exist.
1306	A	AUTO file frame erre OVERFLOWS A cause: With einges chalteter increasing AUTOMATIC file locks is enough storage space not off (see also P8806).
1310	KA	Program number not loaded at emergency program call (P8820 etc.)
1320	KA	Mode of operation change locked e.g. during emergency program call it can not be switched to AUTO mode of operation
1321	KA	Control not in MANUAL operation mode
1322	KA	Control not in AUTO operation mode

9.6 Messages of the system

Message	Effect	Meaning
1800		Fatal error; System start again After sequence error - M1808 - M1820 - M1830 - M1840
1808	SA	Interface operating console < —> CNC overflow of the receive buffer CNC receive buffer is flooded. Possible causes: Override Inputs connected at the operating console not
1809	KA	Interface PLC —> CNC: Parameter write routine (SPARC) with Invalid channel number information: parameter number in P8505 channel in P8506
1810	KA	Interface CNC —> PLC: Data overflow During a parameter transfer to the PLC there was a data overflow. (floating decimal point format does not fit into the fixed point format, mantissa too largely) Information: parameter number in P8505 (info. 1), channel in P8506 (info. 2)
1811	KS	Parameter test character defectively If the channel 1 in the operating mode HAND is, becomes from the operating system in background constantly the total parameter area checks. Info.: Q-parameter number in P8505 (info. 1)
1815	KA	Real time buffer overflow - faulty real time buffer administration or - faulty feedback of the interpolator
1816	KS	Feed back buffer overflow - Feedbacks of the interpolator can not be processed any more.

9.6 Messages of the system (continued)

Message	Effect	Meaning				
1820	SA	Floatingpoint exceptio Exception reason in P		Byte		Bit 0 Inexact Bit 1 Underflow Bit 2 Overflow Bit 3 Divide by Zero Bit 4 Invalid operation Bit 8 not alligned memory access
				2910	-	
		System address in	P850	06		
		Task-Id in	P850 \$100 \$101 \$102 \$103 \$200 \$201 \$300 \$301 \$400 \$500 \$600 \$600 \$800 \$900 \$800 \$900 \$000 \$000 \$c00 \$c00 \$c01) 2 3)))))))))))))))))	PLC PLC Pror Pror Netw CME SMM Oska Posi AUT Real Mon Pror CPL CPL	Fask CMD Task Background Task Server Task ma Task ma Task ma CMD vork Task work Master O STR Task MS Task ar Task tion adjustment OMATIK Task time Task itor Task ma Transport Task J2 TX-Task J2 RX-Task ower Task

1825 Network errors

1826 Network errors

9.6 Messages of the system (continued)

Message	Effect	Meaning				
1830	SA	NA signal became intermittently active (NA: Power failure signal) After the message M1830 position adjustment may not be eingeschatet any longer! (interlock in the PLC) No more NC programs may be started! Axis positions cannot be correct possibly. To start after the occurance of of this error message actual the system again. (power OFF / on)				
		A cause: Errors eliminate:	Cure-early mains voltage failure Mains voltage check Power supply unit check			
1840	SA	(F0) General hardw Module or network fa (see also at the oper				
1841	SA		e is missing defectively problems of the battery plug			
1842	SA	(F2) ±15V-Spannun	g is missing			
1843	SA	(F3) Battery and ±1	5V-Spannung are missing			
1844	SA	processor on the CN	ective fan overheating danger consists, there that C Module is no longer sufficiently cooled. e CNC Processor leads to malfunctions or to			

9.6 Messages of the system (continued)

Message	Effect	Meaning
1950	A	DLL Function or subfunction missing Off the CNC DLL a function in the CNC CORE is called, which does not exist.
		Information: Info1 / P8505: Function code Info2 / P8506: Subfunction paragraph
1951	A	Invalid channel with function call Off the CNC DLL a function in the CNC CORE is called, also invalidly / illegal channel number Information: Info1 / P8505: Function code Info2 / P8506: Subfunction paragraph
1952	A	Invalid axis paragraph with function call Off the CNC DLL a function in the CNC CORE is called, also invalidly / illegal axis paragraph Information: Info1 / P8505: Function code Info2 / P8506: Subfunction paragraph

9.7 Mssages of the interpolator

Message	Effect	Meaning		
2001	SA	Lag distance too large		
2002	SA	SA Admissible output voltage exceeded (see P12142)		
2004	SA	Measuring system signal is missing		
2005	SA	Measuring system UAS is missing		
2006	SA	Measuring system frequency too large		
2007	SA	Measuring system correction too large		
2010	SA	Drive errors		
2020	Axis can not be moved			
2022	Axis not in position			
2023	Coupling difference too large			
2024	Reference distance too large			
2050	Plack buff	or overflow in the interpolator		
2050		er overflow in the interpolator		
2052	Coordinat Possible c	e mode not defined auses: - Type of coordinate does not specify, i.e. e.g. with the Robot system is missing to Robot definition in P11800 - When switching on of a type of coordinate (G48 on, G49)		
	Errors elin	are yet all axes involved does not report. ninate: - Type of coordinate specify - Axes report		

9.7 Mssages of the interpolator (continued)

Message	Effect	Meaning
2101		Hardware end position +
2102		Hardware end position -
2103		Software end position +
2104		Software end position -
2110		Approach reference position
2112		Approach measuring position
2114		Approach emergency position
2116		Approach basic position

9.8 Messages of the PLC

Message	Effect	Meaning
3000		Connection operating panel <-> CNC was interrupted - Security stop of all axes is set
3501		Mode of operation change -> Automatic locked
3502		Mode of operation change -> Manual locked

9.9 Messages of the operating panel

Message	Effect	Meaning
		Range 4000 4299 are DOS error messages
4002	А	File not found
4003	А	Path not found
4004	А	Maximum number of files already opened (FILES=xx)
4005	А	File access refused
4006	А	Invalid file handle not defined or
4012	А	Invalid file mode
4015	А	Drive number not allowed
4016	А	Actual directory can not be cleared
4100	A	Error when reading a file
4101	А	Error when storing a file
4102	А	File variable is not allocated to a file
4103	А	File is not opened
4104	А	File was not opened for reading operations
4105	А	File was not opened for storing operations
4106	А	Invalid numerical format

9.9 Messages of the operating panel (continued)

Message	Effect	Meaning
4150	A	Disc is not write-locked
4151	А	Peripheral device unknown / not connected
4152	А	Drive not ready
4153	А	Invalid DOS function
4154	А	Check sum error when reading from the floppy / hard disc
4155	А	Invalid disc parameter block
4156	А	Head-positioning error on the floppy / hard disk
4157	А	Sector format unknown
4158	А	Disc sector can not be localised
4160	A	Write error when accessing a peripheral device
4161	А	Read error when accessing a peripheral device
4200	A	Division with zero
4201	A	Range test: error
4201	A	Stack test: overflow
4203	A	No more space in the Heap-range
4204	A	Invalid pointer operation
4205	A	Floating point overflow
4206	А	Floating point underflow
4207	А	Floating point error
4211	А	Program too deep

9.9 Messages of the operating panel (continued)

Message	Effect	Meaning
4300	A	Area 4300 4399 messages of the operating system operating panel More than 400 programs in the directory (CNC: NCDATA \). it cannot do all to be displayed.
4301	A	Operating panel Input SIO parity error
4302	А	Operating panel Input SIO Overrun error
4303	А	Operating panel Input SIO Framing error
4310	A	More than 1600 programs in the directory (CNC: NCDATA \). it cannot do all to be displayed. (only on PC operating panel with driver CNC900X.EXE starting from 09.06.97.)
4390	A	Connection operating panel <-> CNC actual interrupted. No response of the CNC within Timeout.
		Area 4400 4499 messages of the control surface
4400	А	Control not in MANUAL
4401	А	Changeover to AUTO not made
4402	А	Graphics simulation not active

9.10 Cycle messages

Message	Meaning	
8001	Geometry errors in the cycle This message appears when the cont can not be processed with the program E.g. P14 smaller than tool radius or to or tool radius is not programmed.	nmed tool data.
8003	Corner radius too small	
8004	Corner radius too big	
8005	Invalid tool radius	
8006	Sequence error	
8007	Pocket radius < tool radius	
8008	Pre-bore tool radius > pocket radius	
8009	In-feed > pocket depth (P13) - allowa	ance on pocket depth (P18)
8010	Invalid inner radius	(P11)
8011	Invalid 1st. pocket dimension	(P11)
8012	Invalid 2nd. pocket dimension	(P12)
8013	Invalid pocket depth	(P13)
8014	Invalid radius	(P14)
8015	Invalid allowance	(P15)
8016	Invalid in-feed	(P16)
8017	Invalid in-feed	(P17)
8018	Invalid allowance on pocket depth	(P18)
8019	Invalid safety allowance	(P19)
8020	Invalid fine-infeed	(P20)

9.10 Cycle messages (continued)

Message Meaning

8021	Invalid plange in feed	(P21)
002.		()
8032	Invalid feed	(P32)
8033	Invalid drilling depth	(P33)
8034	Invalid preliminary stop plane	(P34)
8035	Invalid retraction plane on pocket depth	(P35)
8036	Invalid stroking rate	(P36)
8037	Invalid parameter for 1st. stroke	(P37)
8038	Invalid safety allowance	(P38)

9.10 Cycle messages (continued)

Message Meaning

8100 8101	Invalid X-coordinate X(AB) Invalid Y-coordinate Y(AB)	(P100) (P101)
8103	Invalid angle (E1)	(P103)
8104 8105	Invalid vector length (L1) Invalid vector division (T1)	(P104) (P105)
8106	Invalid number of positionings (N1)	(P106)
8107	Vector division (T1) or number of positionings (N1) is missing	(P105) (P106)
8110 8111	Invalid X-coordinate X(AC) Invalid Y-coordinate Y(AC)	(P110) (P111)
8113	Invalid angle (E2)	(P113)
8114 8115	Invalid vector length (L2) Invalid vector division (T2)	(P114) (P115)
8116	Invalid number of bores (N2)	(P116)
8117	Vector division (T2) or number of positionings (N2) is missing	(P115) (P116)
8120 8121	Invalid X-coordinate pitch circle centre point Invalid Y-coordinate pitch circle centre point	(P120) (P121)
8122	Invalid pitch circle diameter (D)	(P122)
8123	Invalid starting angle (E)	(P123)
8124	Invalid travelling angle (L)	(P124)
8125	Invalid pitch angle (T)	(P125)
8126	Invalid number of bores (N)	(P126)

9.10 Cycle messages (continued)

Message Meaning

8300 8301 8302 8303	No spindle speed programmed No spindle direction of rotation Spindle speed = 0 Spindle speed not reached	(G81, G83, G84, G85 (G81, G83, G84, G85 (G81, G83, G84, G85 (G81, G83, G84, G85)
8309	Oversized pitch dimension (T1) and number of positionings (N1)		(P105) (P106)
8310	Oversized vector division (T1) and final point B (Final point B is defined by X and	Y coordinate (P101 and	(P105) d P102))
8311	Oversized vector length (L1) and final point B (Final point B is defined by X and	Y coordinate (P101 and	(P104) d P102))
8313	Oversized vector length (L1) and vector part (T1)		(P104) (P105)
8315	Oversized vector division (T1) and number of positionings (N1)		(P105) (P106)
8316	Input number of positionings with	0	(P106)
8320	Oversized vector division (T2) and final point C (Final point C is defined by X and	Y coordinate (P111 and	(P115) d P112))
8321	Oversized vector length (L2) and final point C (Final point C is defined by X and	Y coordinate (P111 and	(P114) d P112))
8323	Oversized vector length (L2) and vector division (T2)		(P114) (P115)
8325	Oversized vector division (T2) and number of positionings (N2)		(P115) (P116)
8326	Input number of positionings with	0	(P116)

9.10 Cycle messages (continued)

Message	Meaning	
8332	Wrong proportioned travelling angle L (P124) and pitch angle T	- (P125)
8333	Oversized pitch angle T and number of positionings N	(P125) (P126)
8334 8335	Indicate pitch angle with 0 Indicate pitch angle with 1	(P125) (P125)
8336 8337	Indicate number of bores N with 0 Indicate number of bores N with 1	(P126) (P126)

10. Program packages

10.1	Operating system management program WINBV (CNC 910 / CNC 920 / RC 910 / CNC ETH)	version 5.5 or more highly
10.1.1	WINBV install	10 - 2
10.1.2	WINBV start	10 - 4
10.1.3	Directories	10 - 6
10.1.4	System functions	10 -13
10.1.5	Remote diagnostics	10 -16
10.1.6	Display of the operating panel	10 -18
10.2	Operating system administration	10 -24
10.0.1	(CNC 900 / CNC 900C)	10.04
10.2.1	Boot program	10 -24
10.2.2	Operating system management program BV.EXE	10 -25
10.3	Archiving program NCARC	10 -30

10.1 Operating system management program WINBV

for CNC CPU's, which is programmed over the Ethernet interface.

- CNC CPU 085003 and 085008
- CNC CPU 085004 and 086004
- CNC CPU 800242 and 880242
- CNC CPU 800301 and 800801 ... and future CPU's

WINBV is actual a tool for:

- System maintenance
- Data adminstration
- Data protection
- NC archiving
- On-line remote diagnostics

10.1.1 WINBV install

WINBV becomes 🚉 Explorer - Winbv - U × over on by BWO Datei Bearbeiten Ansicht Wechseln zu Favoriten Extras ? 11 supplied SETUP ~ → → □ 2 時間 凶 × 酉 ■ • program installed. Adresse 🗋 C:\Programme\BWO\Winbv -WINBV puts data one linkage and Ordner x 🛋 _deisreq.isr the following 🗄 🧰 Programme ٠ S__isreg32.dll directories on 🗄 🧰 Adobe DelsL1.isu 🗄 🧰 ahead DelsL2.isu 🗄 🙆 AVWin9x 🖥 keyboard.bmp 🗄 🛄 Bwo Winbv.exe 🗄 🔁 Winbv winb∨.his 🗄 🙆 data winby ico E Cnc 🐻 winbv.ini 🗄 🗋 bp winbv.pro winbvhosts 🗀 bmp8 🗋 cnc900c In the subdirectory 3,41 MB (Freit 🛄 Arbeitsplatz 12 Objekt(e) CNC are already all directories and files for those Adresse 🗋 C:\Programme\BWO\Winbv\data\cnc Ŧ standard CNC bp Ordner × contained. 🖻 Bs912.100 🗄 🛄 Programme ٠ 🔊 Netconf 🗄 🙆 Ādobe 🔊 Param For further 🗄 🙆 ahead 🗟 Plcobj applications 🗄 🗋 AVWin9x 🗟 System it is advisable. 🗄 🛄 Bwo 🗄 🙆 Winbv the directories 🗄 🛄 data and files after 🗄 🔂 cnc the same sample 🗄 🙆 bp to create. 🚞 bmp8 🗋 cnc900c 788 KB (Freie 🛄 Arbeitsplatz 6 Objekt(e)

10.1.1 WINBV install (continuation)

WINBV.ini

	ov.ini - Editor	Sudan 2		- 🗆 X
-	Beerbeiten	Suchen 1		14
		o.cnc.demo XX.XXX.XXX		-
1		c:\programme\		
9			publisher\pp70.exe	
ident	tification	=bwo.winbv	41	
plc_p	path=c:\p]	c900		

For the remote diagnostics into the winbv.ini must be the Iservice address. As graphic editior **Micrografx\picture publisher** one recommends. Language selection: without specification > English

deutsch

> German

Definition of symbolic addresses

WINBV.his Winbv.his - Editor

WINBV.pro

winby.pro-WordPad Date: Bearbeiten Ansicht Einfligen Format 1	-01
Date : Mon Jul 29 2002 Time : 11:41:09 connected to : bwo	
Date : Mon Jul 29 2002 Time : 11:50:12 connected to : bwo	cnc.demo.duration : 96
Date : Mon Jul 29 2002 Time : 14:02:34 connected to : bwo	cnc.demo duration : 78
Date : Mon Jul 29 2002 Time : 16:48:56 connected to : bwo	cnc.demo duration : 90
Date : Tue Jul 30 2002 Time : 11:08:48 connected to : bwo of	enc demo duration : 959

Log of the connections

10.1.2 WINBV start

Connection makes to controller CNC CPU with IP No. xxx.xxx.xxx or with symbolic address (determining with WINBVhosts)

WINBY	20
Connect to :	
bwo.cnc.demo	
Maschine 1	
Maschine 2	
bwo.cnc.demo	

Connection makes to	
operating panel	
(only with started operating panel)	

I WINBV	20
Connect to panel ?	
Yes	No

10.1.2 WINBV start (continuation)

View after the start

Connections to the CNC CPU and to operating panel are maked

<u>File</u> <u>H</u> elp			
Directory tree	File	Length	Date
9		- 10	
🗉 📴 bwo.cnc.demo 🖻 🖥 bwo.cnc.demo panel 1			
B Wo.cnc.demo panel 2			

Total directory structure

CNC CPU, operating panel 1 operating panel 2 as well as PC

Directory tree	File	Length	Date
P		520 ·	
🗉 📴 bwo.cnc.demo			
🖻 🔍 bp			
🖻 🔜 bwo.cnc.demo panel 1			
B Cnc900c			
🗉 🔍 data			
- Cletc			
- Cincdata			
Qufo			
🖶 🔜 bwo.cnc.demo panel 2			
Citxx			

10.1.3 Directories

Directory CNC

Files in general directory <u>CNC</u>

Directory tree	File	Length	Date
<u></u>	()bs912.110	756720	2002-07-29 0
🗉 🔲 bwo.cnc.demo	Onetconf	897	2106-02-06 0
B B bwo.cnc.demo panel 1	Oparam	16235	2083-01-03 0
🖻 🖳 bwo.cnc.demo panel 2	Optcbig	8	2002-07-29 0
⊞pc	Opicobj	262144	2002-07-29 0
C 1/0	System	17	2002-07-29 0

bs912.100 CNC operating system

netconfEthernet configurations# lines starting with # in the first column are a comment

define cnc network adres local 172.16.60.185 netmask 255.255.0.0 # # define panel network adres control_panel 172.16.60.186 255.255.0.0 00000000000 # # define file server adress host 172.16.60.189 # # define route to file servers route 172.16.60.189 255.255.0.0 0.0.0.0 1 # Identification mycompany.mycnc.mynum # gateway XXX.XXX.XXX.XXX # iservice XXX.XXX.XXX.XXX # mail1 to: sub: msg: # serial2 9600 8 e 1

param

Installation related parameters / machine datas

plcobj	Installation related PLC programm
--------	-----------------------------------

system link on the active CNC operating system / link—>bs912.100

Notes to the Ethernet configuration

local	own CNC address
netmask	own network mask
control_panel	Control panel address, network address, Ethernet address. Ethernet address 0 means: each operating panel is accepted. Control_panel can be indicated up to 4 times.
host	file server address (must be equipped with SERVER.EXE).
route	commands for the integrated rooter PC address, gateway address, Ethernet connection number 0 (E1), 1 (E2)
identification	symbolic term of the controller The recommended sequence: machine producer. user. machine no.
gateway	Address of computer in the house network, which makes the acces to internet.
iservice	Address of the BWO central internet computer for on-line remote diagnostics (inquire address please from BWO).
mail1 : mail9	to: address@company.com sub: concern msg: messages In the concern and in the message contents of parameters can be transmitted.
mano	 to it control characters are to 3 at the disposal : % \$ # % the total parameters transmit \$ only the lower 16 bits of the parameter transmit # the identification of the machine transmits
mail1	Example: to: myaddress@company.de sub: # msg: machine is with message \$:8509 Clearing by an error message at the machine. Max. 256 characters.
serial1 / serial2	configuration of the serial interfaces 1 and 2 baudrate bits parity stopbit parity: e (even) / o (odd) / n (no)

Bit-map files in the directory	Winby 5.2 connected width : bwo.cnc.demo			
CNC \ BP \ <u>BMP8</u>	Directory tree	File	Length	Da
BP actual the subdirectory for the operating panel. All files off this directory are read with ' boot ' by the operating panel.	 bwo.cnc.demo bp bmp8 cnc900c bwo.cnc.demo panel 1 bwo.cnc.demo panel 2 pc 	Image: Constraint of the system Image: Constraint of the system <th>80374 124702 2080 518 238 238 518 518 99958 264</th> <th>2001-1 2001-1 2001-1 2001-1 2001-1 2001-1 2001-1 2002-1 2002-1</th>	80374 124702 2080 518 238 238 518 518 99958 264	2001-1 2001-1 2001-1 2001-1 2001-1 2001-1 2001-1 2002-1 2002-1
axkeys.bmp	layout for the axis selection keys			

axeys.biip	ayout for the axis selection keys
keyboard.bmp	key board for inserting on toach screen
keylayout	keyboard layout for BWO virtual keyboard
lampegruen.bmp	PLC keys T1 –T8 ' key actuates ' inserted green box
lamperot.bmp	PLC keys T1 –T8 ' key actuates ' inserted red box
lampeweiss.bmp	PLC keys T1 –T8 ' key does not actuate ' inserted box off
lampeon.bmp	PLC keys T1 –T40 ' key actuates ' inserted red square
lampeoff.bmp	PLC keys T9 –T40 ' key does not actuate ' inserted red square off
plckeys2.bmp	Layout for PLC keys T9 – T40

Note:

The files **axkeys.bmp** and **plckeys2.bmp** can be provided by the customer with installation related letters or layouts. For this BWO recommends the program ' Micrografx Picture Publisher '.

Files in the	Winby 5.2 connected width : bwo.cnc.demo				
directory CNC \ BP \ CNC900C	<u>File</u> <u>H</u> elp				
	Directory tree	File	Length	Da	
BP actual the	8	Cnc900x.cfg	58	2002-1	
subdirectory for	🖯 📴 bwo.cnc.demo	Oppcimage	828080	2002-1	
the operating panel.	© top - top top Dep	Show_e	464607	2002-	
All files off this	a cnc900c				
directory are read	🖽 🖶 bwo.cnc.demo panel 1				
with ' boot ' by the	🗉 🖳 bwo.cnc.demo panel 2				
operating panel.	🗉 🔳pc				

cnc900x.cfg	Configuration file for releasing from directories with path specification (here NCDATA).		
	beep:off DRIPFEED://server/ncdata NCDATA1:/ncdata NCDATA2://server/ncdata	'bleeper' ON / OFF drippfeed mode flash disk (operating panel) peripheral file server	
ppcimage	operating system operating panel CNC	910 / CNC920	
show_e	installation related user surface / picture	es	

Files in the directory Winby 5.2 connected width : bwo.cnc.demo CNC \ <u>NCRAM</u> File Help Length **Directory tree** File NC programs in the 8 2704 RAM memory of the P1000 🛛 📃 bwo.cnc.demo CNC e Obp Dmp8 Cnc900c Incram 🗉 📓 bwo.cnc.demo panel 1 ■ ■ bwo.cnc.demo panel 2

🖽 📕 рс

Directory PANEL

Files in the directory PANEL \ CNC900C

PANEL actual the general directory on the Flash disk of the operating panel

Directory tree	File	Length	Da
<u>۶</u>	@exttext.0	23	2001-
B Bwo.cnc.demo	@exttext.1	24	2001-
🖻 🔜 bwo.cnc.demo panel 1	<pre>Qpass_1.dat</pre>	1274	2001-
■ \left\cnc900c	1.62		
🗉 🔍 data			
- Cletc			
- Cincdata			
Qufo			
🖻 🔜 bwo.cnc.demo panel 2			
⊞ <mark>≣</mark> pc			

These are installation related files (secured on the flash disk)

NC programs zero points tool datas parameter (axis machine data) parameter (SERCOS final drive data)

The directory PANEL on the flash disk of the operating panel can cover still further directories, which contain various configuration files as well as user-referred files or texts due to application.

Directory PC

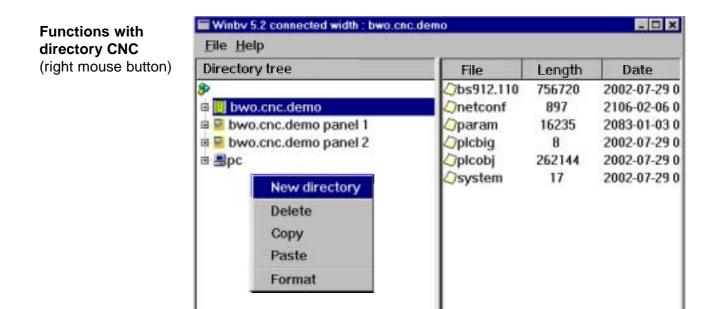
Structure of the directory <u>PC</u>

Directory tree	File	Length	Datu
%	OBS912.100	719824	2002-03
E bwo.cnc.demo	QNETCONF	591	2001-11
🗉 🔜 bwo.cnc.demo panel 1	PARAM	21080	2001-10
B B bwo.cnc.demo panel 2	OPLCOBJ	65536	2001-10
🖻 📕 pc	SYSTEM	17	2001-09
🖻 🐚 cnc			
🗉 🔍 bp			
Bqmd D			
Cnc900c			

The subdirectories can be selected and organized freely however are recommended it to structure the organization of the subdirectories after the following system.

For each application on subdirectory, which again all subdirectories for total application contains (CNC CPU, PANEL) .

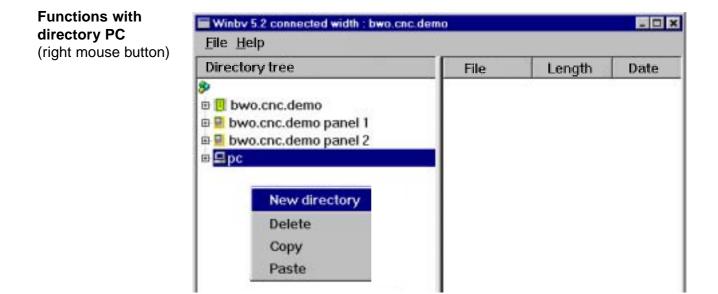
10.1.4 System functions

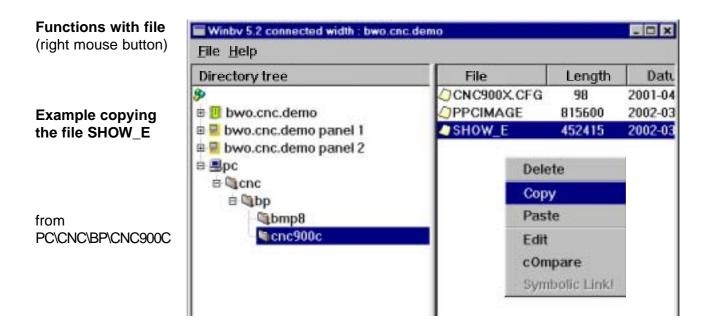

WINBV System functions

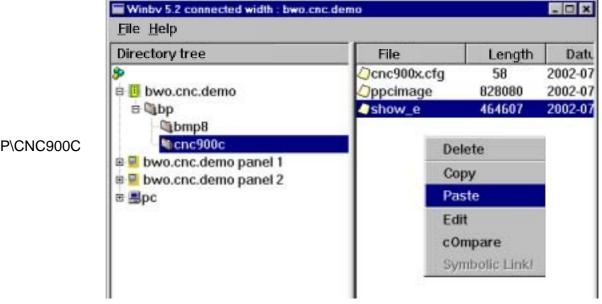
Directories and files can be created, copied, inserted, deleted as well as processed by comfortable functions.

Thus the possibility consists to create backup on the PC by each application on.

Menü File

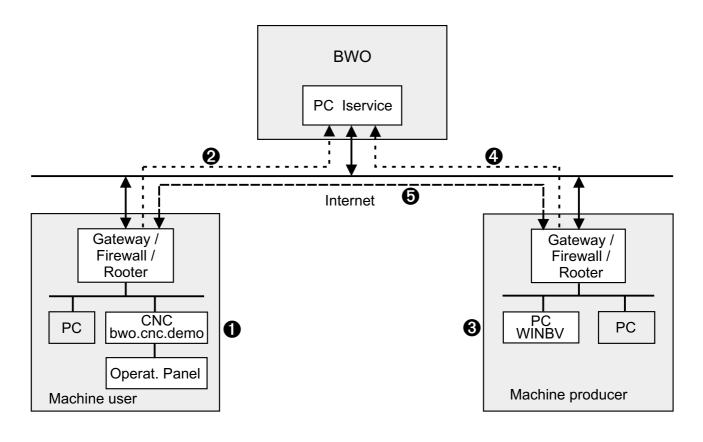

ile <u>H</u> elp				
<u>S</u> et clock	m	File	Length	Date
<u>R</u> ead Flash				1
<u>C</u> onsole	no			
Plc	no panel 1 no panel 2			
Quit	in Francis F			


10.1.4 System functions (continuation)


Functions with directory panel (right mouse button)	Winby 5.2 connected width : bwo.cnc.demo			
	Directory tree	File	Length 84	Datu 2001-08
	B B bwo.cnc.demo bwo.cnc.demo panel 1 bwo.cnc.demo panel 2 bwo.cnc.demo panel 2	Øremote	25	2002-07
	New directory			
	Delete Copy Paste			
	Format			
	Screen			

10.1.4 System functions (continuation)

to CNC\BP\CNC900C

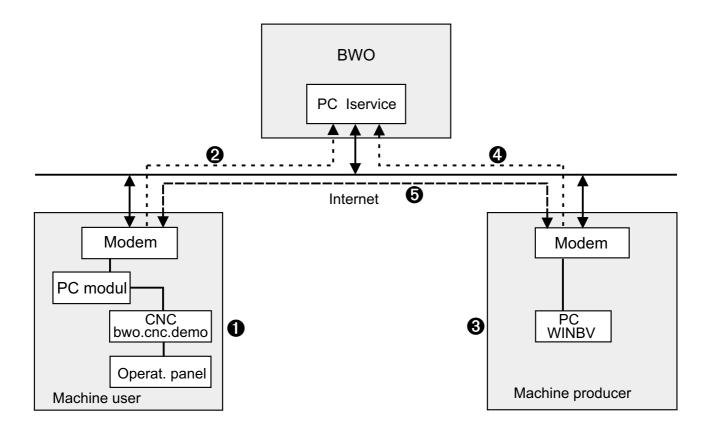

10.1.5 Remote diagnostics

Mode of operation of the BWO remote diagnostics with internal firm network

CNC control of the machine user.

- 2 The CNC control of the machine user goes with an incident (at the request of the operator) on-line and sends over internet a message with the own CNC address (e.g. bwo.cnc.demo) to the internet PC by BWO (Iservice address).
- **3** Program WINBV on PC of the machine producer.
- The program WINBV asks the BWO internet PC whether the CNC of the machine user is on-line actual.
- The BWO internet PC links the CNC directly with programm WINBV. Now can of the machine producer remote diagnostics of the machine to be executed. On the Firewall computer of the machine user the IP masquerading must for suitable devices de-energised. Bond BWO with questions please

CNC 900 Programs


10.1.5 Remote diagnostics (continuation)

Mode of operation of the BWO remote diagnostics with modem

CNC control of the machine user.

- 2 The CNC control of the machine user goes with an incident (at the request of the operator) on-line and sends over internet a message with the own CNC address (e.g. bwo.cnc.demo) to the internet PC by BWO (Iservice address).
- **3** Program WINBV on PC of the machine producer.
- The program WINBV asks the BWO internet PC whether the CNC of the machine user is on-line actual.
- The BWO internet PC links the CNC directly with programm WINBV. Now can of the machine producer remote diagnostics of the machine to be executed.

10.1.6 Display of the operating panel

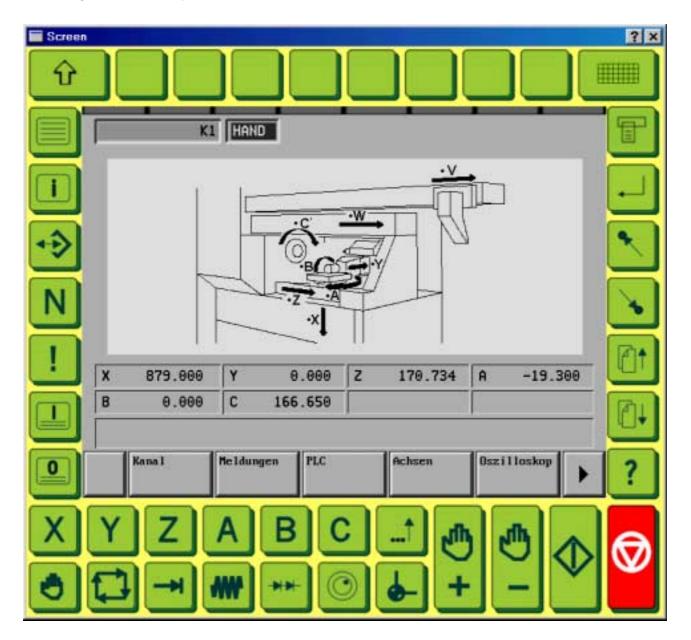
Switching on

Function Screen (right mouse button)

Directo	ry tree	File	Length	Datu
 bwo.cnc.demo bwo.cnc.demo panel 1 bwo.cnc.demo panel 2 bwo.cnc.demo panel 2 		⊘cnc900x.cfg ⊘remote	84 25	2001-0 2002-0
	New directory			
	Delete Copy Paste			
	Format			
	Screen			

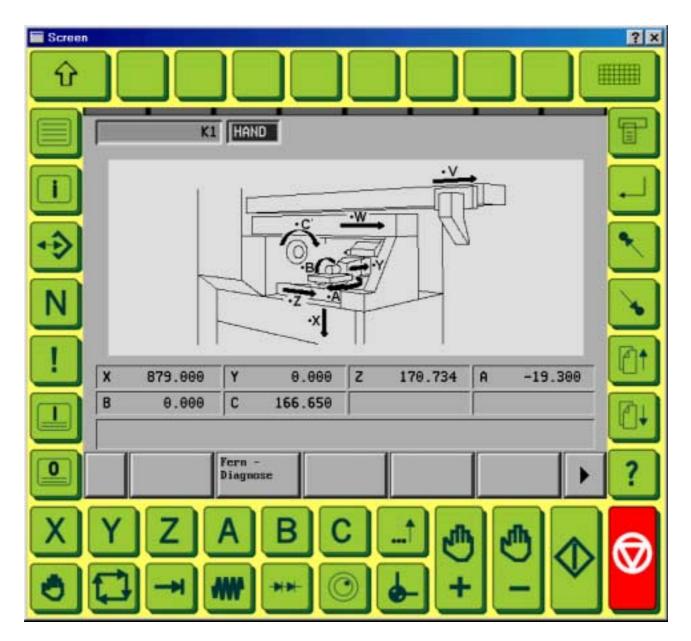
The display is illustrated. The sceen contents actual black-and-white.

Screen					? ×
Û					
	К	HAND			T
I	HAND-DATEN	Sol1 1	st	Override	-
+\$	Vorschub Drehzahl	10000 1136.821	12000 120 0 0		
N	Nullpunkt	-	H-Fk	t	
!	X 879.000	Y 0.000	Z 170.734	A -19.300	
	B 0.000	C 166.650			
	Kana I	Startdaten Dialog		Parameter	?
X	ΥΖ	ABC	س 1 (0
•		₩ ++ () & +	·	Ű


I/O circulation

Screen					
	EA-Verkehr K1 HAND	I			T
	CNC: PATAMENTER WERKZEUGDATEN - TOOLDATA NULLPUNKTE - ZEROPOIN P1000 29-03-00 10	ITS (d	ata) 18-1 tc> 18-1	8-44 8:13 8-44 8:13	
H	Freier NC-Speicher	1416576 Маж	MC-Speicher 1	419776	
Ä	X 879.000 Y B 0.000 C	0.000 Z	170.734	A -19.300	
	Kanal Markier	e Lösche	Program Eingabe	Kopie <->	• ?
X	YZA	BC		1	
•		** 📀	+		

Diagnosis


Switching on with the key "!"

Remote diagnostics

Switching on with the keys "!" and " remote diagnostics "

Switching with the keys ,, on-line " / ,, off-line "

Screen						? ×
Û						
		К1	HAND			T
		Online Offline	=			-
+\$		Meldungsnr. Iservice Ho	and the second se	XXX.XXX.XXX		•
N						
!	X	879.000	Y 0.000	Z 170.734	A -19.300	
	B	0.000	C 166.650	Í	<u>i i</u>	(A)
	•		Me Id send	ung Online en	Offline	?
X	Y	Z	AB	<mark>س 1 0</mark>	9 10 1	A
•			₩ ** (0 6 4		۳

10.2 Operating system administration

10.2.1 Boot program

The BOOT EPROM contains the boot program for the CNC module. The boot program initialize the hardware of the CNC module and start the actual operating system, which is in the FLASH EPROM of the CNC module. The user has the possibility of interrupting this flow with the transition from the initialization program to the operating system and of starting a utility routine, which operates the service interface. With the program BV.EXE can be managed then from the PC the operating system on the CNC module. Interrupting the flow takes place from the user through printing of the RESET key at the plug of the interface cable.

10.2.2 Operating system management program BV.EXE

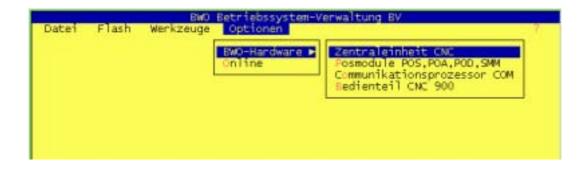
for CNC CPU's, which with the help of "P-link adapter 083767" are programmed.

- CNC CPU32B 083671 und 088671
- CNC CPU64B 084564

Menu after the call by BV.EXE

Now the link RESET key press and immediately after it through to printing of the RETURN key acknowledge.

If the system time of the CNC CPU with the system time of the PC differs, the following menu comes to the display. Here now the system time of the CNC CPU can be set. One suggests the system time of the PC.



Basic menus

Datei Flash we	EWO Betriebssystem-Verwaltung EV kzeuge Optionen	7
Anzeigen E Beenden ALT+X	Betriebssystem Laufzeitbibliothek Programme+Parameter Alles	

Datei Flash	EWO Betriebssystem-Verwaltung BV Werkzeuge Optionen	7
	Systemzeit andern Rekonstruieren Formatieren Duplizieren	

Example: Operating system write / update

With the selection 'Flash ' ' writing ' is opened the following selection menu.

Name : BS090.2119		_	
Datei: BS910.090	DLL6464,001	OV.	
BV.MNU BV.HLP	DLL001.ZIP MON64.EXE	OK Abbrechen	
BV.CFG BV.EXE	UNZIP.EXE ZIP.EXE	Hilfa	
BS090.ZIP	BUF\		
T:\BWO_TOOL* BS090.ZIP	745277 Bytes 19.	11.1999 15:39	

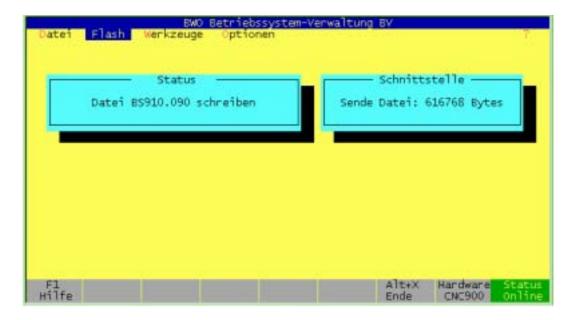
In this menu the file which can be written is selected and acknowledged.

 EWD Batriebssystem-Verwaltung EV

 Datei Flash Werkzeuge Optionen

 A C H T U N G !

 Die Funktion "Schreiben" überschreibt das aktuelle CNC 900 Betriebssystem, wenn die ausgewählte Datei dem Alias "BS*.*" entspricht. Wenn Sie die Funktion ausführen wollen, wählen Sie bitte "OK" oder "Abbrechen" um zum Hauptmenü zur ückzukehren.


 OK
 Abbrechen"

 Alt+X
 Hardware

 Status Online

Subsequently, further menus follow

The status indication of the CNC CPU displays again '0', is the recording procedure terminated.

Name: System	
Datei:	
PLC083 PARAM SYSTEM SEE	
BS910.SYS DLL64 -> DLL910.SYS	
SYSTEM 17 Bytes 24.11.1999 11:23 Verknupfung mit 85910.SYS	

Example: Operating system read

10.3 Archiving program NCARC

With the help of the archiving program NCARC.EXE can be in or read NC data (NC programs - parameter tables - machine data) over a serial interface into the controller.

Connection V24: PC COM1 or COM2 < -----> peripheral device interface CNC900

Start menu

	administration program	BWO - Elektronik
===> E ===> A	Input of NC data Output of NC data	(from controller —> in PC) (from PC —> in controller)
===> B ===> P ===> Q	NC data or error message I/O interfaces parameters Program end	(display output) (modify / a checking)

10.3 Archiving program NCARC (continued)

Menu output of NC data

NC programs - parameter tables - machine data NC - Archiving and administration program BWO - Elektronik MENU = > A < = output of NC data (PC --> controller) Program file name input: ===>????

Menu input of NC data

NC programs - parameter tables - machine data

NC - Archiving and administration program BWO - Elektronik

MENU = > E < = input of NC data (controller --> PC)

Program file name input: ===> ?????